
Bayesian Estimation of Panel Models under

Potentially Sparse Heterogeneity

Hyungsik Roger Moon

University of Southern California,

Yonsei University

Frank Schorfheide∗

Univ. of Pennsylvania

CEPR, NBER, and PIER

Boyuan Zhang

Amazon.com

October 20, 2023

Abstract

We incorporate a version of a spike and slab prior, comprising a pointmass at zero

(“spike”) and a Normal distribution around zero (“slab”) into a dynamic panel data

framework to model coefficient heterogeneity. In addition to homogeneity and full

heterogeneity, our specification can also capture sparse heterogeneity, that is, there

is a core group of units that share common parameters and a set of deviators with

idiosyncratic parameters. We fit a model with unobserved components to income data

from the Panel Study of Income Dynamics. We find evidence for sparse heterogeneity

for balanced panels composed of individuals with long employment histories.

JEL CLASSIFICATION: C11, C23, C53, E20

KEYWORDS: Bayesian Analysis, Forecasting, Income Dynamics, Panel Data Models, Spar-

sity, Spike-and-Slab Priors

∗Correspondence: H.R. Moon: Department of Economics, Univ. of Southern California, KAP 300, Los
Angeles, CA 90089. E-mail: moonr@usc.edu. F. Schorfheide: Department of Economics, Perelman Center
for Political Science and Economics, University of Pennsylvania, 133 S. 36th St., Philadelphia, PA 19104-6297.
Email: schorf@ssc.upenn.edu. B. Zhang: Amazon.com, Seattle, WA. Email: zhang.boyuan@hotmail.com.
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1 Introduction

Panel data models feature two types of coefficients: homogeneous coefficients that are com-

mon among all units i “ 1, . . . , N , and heterogeneous coefficients that differ across units. In

recent years, there has been a growing literature that focuses on the estimation of heteroge-

neous coefficients, which is challenging in environments in which the time series dimension

is small. A natural way of adding information to the estimation of unit-specific coefficients

is the use of prior distributions. The key insight in panel data applications is that one can

extract information from the cross-section and equate the prior distribution with the (unob-

served) cross-sectional distribution of unit-specific coefficients. The time series information

for each unit can then be combined with the prior distribution, to generate more precise esti-

mates of the heterogeneous coefficients. While in many models the cross-sectional coefficient

distribution is in principle non-parametrically identified, in practice it is often desirable to

impose parametric restrictions. In this paper, we consider a particular restriction: we as-

sume that there is a core group of units that share a common parameter value, whereas

the remaining units (deviators) have idiosyncratic values. If the core group contains a large

number of units, then heterogeneity is sparse.

We assume that the heterogeneous coefficients are distributed according to a version of

a spike-and-slab (S&S) prior: with probability 1 ´ q the coefficient for unit i equals the

predominant value (spike), and with probability q it deviates from the predominant value.

This setup nests two important special cases: coefficient homogeneity (q “ 0) and full

heterogeneity (q “ 1). We will say that heterogeneity is sparse if q is close to zero and dense

if q is close to one. The probability q and the parameters characterizing the distribution of

the deviations are hyperparameters that are estimated from the panel data. Whether the

concept of sparse heterogeneity is useful in practice, is an empirical question. We use the

proposed prior distribution to estimate a dynamic model for labor earnings obtained from

the Panel Study of Income Dynamics (PSID). We construct two types of samples from the

PSID data: balanced panels that include individuals who have been working uninterruptedly

for a long period of time, and an unbalanced panel that includes individuals with a variety

of earnings and employment histories. The balanced panels do feature sparse heterogeneity,

whereas the more diverse unbalanced panel is better described by full heterogeneity.

The paper makes the following contributions: first, we incorporate a version of an S&S

prior, comprising a pointmass at zero (“spike”) and a Normal distribution around zero

(“slab”) into a dynamic panel data framework to model coefficient heterogeneity. Such a prior
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has been used by Geweke (1996) and, more recently, Giannone, Lenza, and Primiceri (2021),

in the context of regressor selection problems. We extend the prior to handle heterogeneous

variance parameters and show how to implement posterior inference using a Gibbs sampler.

Second, we conduct a Monte Carlo study that compares the point estimation accuracy under

the proposed (S&S) prior to that obtained by (incorrectly) imposing coefficient homogeneity

(q “ 0) or full heterogeneity (q “ 1). If q is close to zero or one, then estimates under the S&S

prior are about as accurate as the estimates that impose the nearly-correct restriction. If q

is between 0.2 and 0.8 the estimates under the S&S prior clearly dominate the alternatives.

Third, we show in our application that the concept of sparse heterogeneity is empirically

useful.

In the empirical application we estimate income processes based on earnings data from

the PSID. There is a long-standing debate in the literature whether earnings profiles are ho-

mogeneous or heterogeneous across individuals. Guvenen (2007) labeled these specifications

RIP (restricted income profiles) and HIP (heterogeneous income profiles), respectively. We

offer a third option in our setup: sparsely heterogeneous income profiles, which could be

abbreviated as SHIP. The literature on the estimation of idiosyncratic income processes has

considered many different specifications. There are a few features that all of them share:

the income process typically takes the form of an unobserved components model with de-

terministic and stochastic components. We consider three components: a linear function

in experience, an autoregressive component with AR coefficient ρi, and an iid component.1

There is typically time variation and cross-sectional variation in the income risk, i.e., the

stochastic components. In our model we allow for time specific variance coefficients that

also vary across individuals. While most of the literature assumes that the autocorrela-

tion parameter of the persistent income component is common across units, we allow for

heterogeneity.

The evidence for sparse heterogeneity depends on the construction of the panel data set

that is used in the estimation. Using relatively small balanced samples, our posterior esti-

mates imply that heterogeneity with respect to returns to experience and the autocorrelation

of the persistent stochastic income component is sparse at best, with large core groups of in-

dividuals sharing identical coefficients and a small number of deviators. These estimates can

be interpreted as evidence against a HIP version of the model. We also generate one-step-

ahead forecasts for the entire cross-section of individuals using our baseline specification, a

1The unobserved components model is fitted to residuals from a regression of earnings on time fixed
effects and some demographic characteristics.
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RIP specification, and a HIP specification. Using log predictive scores, the HIP version is

clearly dominated, and the performance of our sparsely heterogeneous baseline specification

is for most samples identical to that of the more restrictive RIP specification. Repeating

the estimation on a large unbalanced panel, the parameter estimates lead to an almost fully

heterogeneous specification that does not feature core groups of units with identical param-

eter values, which is evidence in favor of the HIP conjecture. In terms of one-step-ahead

out-of-sample forecasting performance, however, even for the unbalanced panel the more

parsimonious RIP specification leads to slightly better forecasts on average.

Third, we examine unit-level interval forecasts conditional on information from the full

panel Y1:N,0:T accounting for shock and parameter uncertainty, the full panel ignoring pa-

rameter uncertainty, and the individual history Yi,0:T accounting for shock and parameter

uncertainty, distinguishing between core group members and deviators. This comparison has

an important message for the macroeconomic life-cycle model literature: subtle assumptions

about the agents information set can have large effects on the income uncertainty that agents

face and hence on their precautionary savings motive.

Our paper is related to several strands of literature. We are using a variant of an S&S

prior, which was originally proposed for regressor selection problem. The prior proposed by

Mitchell and Beauchamp (1988) consisted of a point mass at zero (“spike”) and a uniform

prior (“slab”). For computational reasons George and McCulloch (1993, 1997) replaced the

point mass by a Normal distribution with very small variance, and the uniform distribution

by a Normal with large variance. Geweke (1996) combined a pointmass at zero with a

Gaussian distribution, which is the specification that was recently used by Giannone, Lenza,

and Primiceri (2021) to examine whether regression models in economics tend to be sparse

or dense. The regressor selection problem can be viewed as a special case of the fundamental

problem of estimating the vector of means of a multivariate Normal distribution. Johnstone

and Silverman (2004) examined the large sample properties of Bayesian posteriors under a

prior that is a mixture of a pointmass at zero and a continuous distribution that has fatter

tails than a Normal distribution. The authors are particularly interested in sparse settings

with a large number of zeros. The asymptotic concentration of posterior distributions in this

environment is also studied by Castillo and van der Vaart (2012), albeit under a somewhat

different prior distribution.

Our paper is concerned with the estimation of potentially heterogeneous slopes and vari-

ance parameters in dynamic panel data models, which involves more complicated versions

of the vector of means problem. While much of the panel data literature has traditionally
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focused on the estimation of the common or homogeneous parameter values, treating, for

instance, heterogeneous intercepts as incidental nuisance parameters, the estimation of the

heterogeneous coefficients can be important for treatment effect analysis or forecasting. In

the context of our application, the prediction of idiosyncratic income profiles is essential

for consumption and investment decisions and is at the core of every life-cycle model in

macroeconomics. We are building on recent Bayesian approaches by Chamberlain and Hi-

rano (1999), Gu and Koenker (2017b,a), Liu, Moon, and Schorfheide (2020), Liu (2023), Liu,

Moon, and Schorfheide (2023). The key point of departure from the earlier work is the use

of an S&S type prior that lets us pick up patterns of either sparse or dense heterogeneity,

bridging homogeneity and full heterogeneity.2

There exists a large literature at the intersection of labor economics and macroeconomics

on the estimation of idiosyncratic income processes. A longstanding debate in this literature

is whether income profiles are homogeneous or heterogeneous. The heterogeneity typically

refers the return to experience. Among others, MaCurdy (1982), Abowd and Card (1989),

and Guvenen (2007, 2009) provide evidence in favor of HIP, whereas Lillard andWeiss (1979),

Hause (1980), Baker (1997), Haider (2001), Hryshko (2012), and Hoffmann (2019) favor

the homogeneous RIP specification, which often involves a unit-root or highly persistent

stochastic component. The importance of heterogeneity in income profiles, persistence of

income processes, and the variance of income shocks is also emphasized by Browning, Ejrnjes,

and Alvarez (2010) and Browning and Ejrnjes (2013). Coefficient heterogeneity in this

literature is typically modeled through random effects. The latter two papers allow for these

random effects to be correlated with each other, assuming they are determined by some

underlying factors. While we do not allow for conditional heteroskedasticity in our model

specification as, for instance, in Meghir and Pistaferri (2004) or Hospido (2012), we do allow

for cross-sectional heterogeneity as in Gu and Koenker (2017b) and find it to be dense.

Traditionally, the earnings dynamics literature focuses on the estimation of (correlated)

random effects distributions, characterizing the degree of coefficient heterogeneity in the

population. Our Bayesian estimation approach generates such estimates along with esti-

mates of the unit-level coefficients, under the assumption of potentially sparse heterogeneity.

Whether or not the interest lies in the random effects distribution or the unit-level coef-

2The notion of group heterogeneity has received a lot of attention in the recent panel data literature,
see Bonhomme and Manresa (2015) for the seminal paper and Zhang (2023) for a Bayesian implementation
that allows users to formulate priors about group memberships. Our paper considers a specification with
one core group of units. In principle it could be extended to multiple core groups, but this extension is left
for future research.
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ficients depends on the particular application. One novel contribution of our application

below, is to also assess the fitted income-dynamics model by evaluating the pseudo-out-of-

sample forecast accuracy for the individuals included in the panel data set, rather than a

hypothetical population implied by the estimated model.

The remainder of the paper is organized as follows. Our approach of capturing potentially

sparse heterogeneity through an S&S type prior distribution is described in the context of a

vector of means estimation in Section 2. This prior is then incorporated into two linear panel

data models with heterogeneous intercept, slope coefficients, and shock standard deviations

in Section 3. Results from two Monte Carlo experiments are summarized in Section 4 and

the empirical analysis is presented in Section 5. Finally, Section 6 concludes. Details on the

posterior samplers for the Monte Carlo study and the empirical analysis are provided in the

Online Appendix. The Appendix also contains additional empirical results.

2 Sparse Heterogeneity

Throughout this paper, we pursue a Bayesian approach, place a prior distribution over the

parameters, and generate draws from the posterior distribution. In the context of estimating

a vector of means of a multivariate Normal distribution, our approach to sparse heterogeneity

takes the following form. Consider the model

yi “ δi ` ui, ui „ iidN p0, 1q, i “ 1, . . . , N (1)

equipped with a prior distribution that is a mixture of a pointmass at zero and a Normal

distribution:

δi|pq, vδq „

#

N p0, vδq with prob. q

0 with prob. 1 ´ q
. (2)

This prior distribution has been used by Geweke (1996) and, more recently, by Giannone,

Lenza, and Primiceri (2021) in the context of regressor selection problems. The sparsity

of the δ “ rδ1, . . . , δN s1 vector is determined by the hyperparameter q, which controls the

probability of the coefficient for unit i deviating from the common value. Thus, 1 ´ q

is the probability assigned to the pointmass at zero and hence the height of the “spike.”

The second hyperparameter, vδ, controls the width of the “slab.” The larger vδ, the larger

deviations from the common parameter on average. We will refer to units for which δi “ 0
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as the core group, whereas the other units are deviators.3 The prior can be generalized in a

straightforward manner by replacing the N p0, vδq distribution with a N pδ, vδq distribution

and treating the δ as a third hyperparameter.

Let Y1:N denote ty1, . . . , yNu. Conditional on the hyperparameters pq, vδq, the posterior

distribution is also a mixture of a pointmass at zero and a Normal component:

δi|pY1:N , q, vδq „

#

N pδ˚
i , v

˚
δ q with prob. q˚

0 with prob. 1 ´ q˚
, (3)

where

δ˚
i “

1

1{vδ ` 1
yi, v˚

δ “
1

1{vδ ` 1
,

q˚

1 ´ q˚
“

q

1 ´ q
pvδ ` 1q

´1{2 exp

"

1

2

vδ
vδ ` 1

y2i

*

. (4)

The odds in favor of a Gaussian component are an increasing function of the squared devia-

tions from zero, y2i . The posterior mean is given by Erδi|Y1:N s “ q˚δ˚
i , which is never exactly

equal to zero. However, it can be shown that the posterior median, denoted by medpδi|Y1:Nq,

has the property that it can be exactly equal to zero for small values of y2i : medpδi|Y1:Nq “ 0

for ´cpδ˚
i , q

˚, v˚
δ q ď yi ď cpδ˚

i , q
˚, v˚

δ q; see, for instance Johnstone and Silverman (2004).

The hyperparameters are determined by the marginal likelihood function

ppY1:N |q, vδq (5)

“ p2πq
´N{2

N
ź

i“1

ˆ

qp1 ` vδq
´1{2 exp

"

´
1

2p1 ` vδq
y2i

*

` p1 ´ qq exp

"

´
1

2
y2i

*˙

.

We will combine this marginal likelihood with a prior ppq, vδq for the hyperparameters and

conduct posterior inference. For the posterior computations it is convenient to introduce the

auxiliary variables zi such that zi “ 0 if δi “ 0 and zi “ 1 if δi “ 0. We will say that unit i

3Alternatively, one could think of two groups: a δi “ 0 group and a δi “ 0 group.
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is a member of the core group if zi “ 0 and it is a deviator if zi “ 1. Then,

ppY1:N , Z1:N |q, vδq (6)

“ ppY1:N |Z1:N , q, vδqppZ1:N |q, vδq

“ p2πq
´N{2

¨

˝

ź

i | zi“1

p1 ` vδq
´1{2 exp

"

´
1

2p1 ` vδq
y2i

*

˛

‚

¨

˝

ź

i | zi“0

exp

"

´
1

2
y2i

*

˛

‚

ˆ

n
ź

i“1

p1 ´ qq1´ziqzi .

Given a prior for pq, vδq, draws from the posterior distribution can be obtained via Gibbs iter-

ating over the conditional posteriors Z1:N |pY1:N , q, vδq, q|pY1:N , Z1:N , vδq and vδ|pY1:N , Z1:N , qq.

Notice that the argmax of ppY1:N , Z1:N |q, vδq with respect to pZ1:N , q, vδq satisfies:

q̂ “
1

N

N
ÿ

i“1

Itẑi “ 1u, v̂δ “ max

#

0,

řN
i“1 Itẑi “ 1uy2i
řN
i“1 Itẑi “ 1u

´ 1

+

ẑi “ I
"

q̂

1 ´ q̂
p1 ` v̂δq

´1{2 exp

"

v̂δ
2p1 ` v̂δq

y2i

*

ě 1

*

,

where Itx “ au is the indicator function that is equal to one if x “ a and equal to zero

otherwise. Thus, ẑi “ 1 if the likelihood ratio of δi „ N p0, v̂dq versus δi “ 0 exceeds one,

q̂ corresponds to the fraction of ẑis that are equal to one, and v̂d is the variance of the

observations attributed to the Gaussian component of the model (minus one).

The prior distribution in (2) nests coefficient homogeneity (q “ 1) and full coefficient

heterogeneity (q “ 1) as special cases. In practice, whether q is close to zero or one is partly

determined by the researcher when (s)he constructs the estimation sample. In our empirical

application we use the raw panel data set to construct balanced panels in which units are

fairly homogeneous and an unbalanced panel that tries to include as many units as possible.

The former samples will feature sparse heterogeneity in some dimensions, whereas the latter

sample will lead to q estimates that are close to one.

3 Panel Data Models with Sparse Heterogeneity

We consider two dynamic linear panel data models in this paper. The first model,M1, which

will be used in the Monte Carlo analysis in Section 4, takes the form of a dynamic linear
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regression. The second model, M2, is an unobserved components model that can be written

in state-space form and is used for the empirical analysis. In the remainder of this section we

present the specifications of M1 and M2 and sketch the posterior sampler for the state-space

model M2, which nests the simulation algorithm for the regression model M1 as a special

case.

Linear Dynamic Panel Regression Model M1. Under M1 the dependent variable yit

evolves according to

yit “ α ` δαi ` pρ ` δρi qyit´1 ` σ
a

δσi uit, i “ 1, . . . , N, t “ 1, . . . , T. (7)

This specification allows for cross-sectional heterogeneity in the intercept α, the autoregres-

sive coefficient ρ, and the innovation standard deviation σ through the discrepancies δαi , δ
ρ
i ,

and δσi . Units i for which the discrepancies are equal to zero, share a common intercept,

autocorrelation parameter, and shock standard deviation, respectively. The remaining units

deviate from the parameters of the core group(s) and have heterogeneous coefficients. To

induce sparsity, we use the prior in (2) for δαi and δρi , equipping q and vδ with superscripts

α and ρ. Because of the non-negativity of variances, we use a slightly different prior for δσi :

δσi |qσ, νδσ , τδσ „

#

IG
`

νδσ
2
, τδσ

2

˘

with prob. qσ

1 with prob. 1 ´ qσ
, (8)

where IG is the Inverse Gamma distribution. We impose that Erδσi s “ 1 and reparameterize

the prior distribution in terms of its variance vδσ which leads to4

νδσ “ 2v´1
δσ ` 4, τδσ “ 2v´1

δσ ` 2. (9)

We use the following priors for the common parameters α, ρ, and σ2 of the core group(s):

α „ N p0, vαq, ρ „ N p0, vρq, σ2
„ IG

´νσ
2
,
τσ
2

¯

, (10)

For the hyperparameters of the S&S priors we use

ql „ Bpa, bq, l P tα, ρ, σu; vδl „ IG
´νδl

2
,
τ δl

2

¯

, l P tα, ρ, σu, (11)

4The model could be restricted by requiring that qα “ qρ “ qσ “ q and that the indicator functions
zαi “ zρi “ zσi “ zi are identical. This restriction implies that members of the core group have identical α,
ρ, and σ2 parameter values, and deviators differ in all three dimensions.
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where Bpa, bq is the Beta distribution. We define the parameter vector θ as

θpM1q “ rα, ρ, σ2, qα, qρ, qσ, vδα , vδρ , vδσ s
1 (12)

and stack the hyperparameters that index the prior distributions in (10) and (11) into the

vector

λpM1q “ rvα, vρ, νσ, τσ, a, b, νδα , τ δα , νδρ , τ δρ , νδσ , τ δσ s.1 (13)

We denote the prior density of θ conditional on the hyperparameters as ppθ|λ,M1q.

State-Space Model M2. This model contains a latent variable sit and takes the form of a

state-space model, which is given by

yit “ x1
itpα ` δαi q ` sit ` σu,t

b

δσi,uuit, (14)

sit “ pρ ` δρi qsit´1 ` σϵ,t

b

δσi,ϵϵit. (15)

The main difference between (7) and (14) is the presence of the latent state sit. (14) can

be interpreted as the measurement equation of the state-space model, and (15) is the state

transition. Moreover, we let the shock standard deviations σu,t and σϵ,t vary over time. The

parameter α is now a k-dimensional vector that interacts with the vector of regressors xit.

For the δi discrepancies we use the priors (2) and (8) from above with the modification

that vαδ is a covariance matrix for k ą 1. The priors for α and ρ are the same as in (10),

with the understanding that vα is also a covariance matrix. For the shock variances we now

use independent IG priors:

σ2
u,t „ IG

´νσu
2
,
τσu
2

¯

, σ2
ϵ,t „ IG

´νσϵ
2
,
τσϵ
2

¯

. (16)

The prior for the hyperparameters of the S&S prior in (11) is modified as follows: because α

is a vector for k ą 1 the IG distribution for vαδ is replaced by an Inverse Wishard distribution

IW pνδα ,Ψδαq. Moreover, the priors for qσ and vδσ are replaced by separate priors for qσu ,

qσϵ , vδσu , and vδσϵ . Finally, we need a prior distribution for the initial state s0. We assume

that s0 „ N pµs0 , vs0q, where

µs0 „ N pµ
s0
, vs0q, vs0 „ IG

´νs0
2
,
τ s0
2

¯

. (17)

Notice that the state-transition equation (15) induces the distribution of s1, . . . , sT condi-
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tional on s0. This leads to the following definitions of θ and λ:

θpM2q “ rα1, ρ, σ2
u,1:T , σ

2
ϵ,1:T , q

α, qρ, qσu , qσϵ , vδα , vδρ , vδσu , vδσϵ , µs0 , vs0s
1 (18)

λpM2q “ rvα, vρ, νσu , τσu , νσϵ , τσϵ , a, b, νδα ,Ψδα , νδρ , τ δρ , νδσu , τ δσu , νδσϵ , τ δσϵ , (19)

µ
s0
, vs0 , νs0 , τ s0s

1 .

Restricted Model Specifications. ForM1, we consider a homoskedastic version in Exper-

iment 1 which is obtained by setting qσ “ 0 and δσi “ 0. Moreover, we also estimate a model

with homogeneous coefficients which is obtained by setting qα “ qρ “ 0 and δαi “ δρi “ 0.

Under this restriction every unit i belongs to the core group. A fully heterogeneous model

specification is obtained by letting qα “ qρ “ 1, meaning there no longer are core groups

of units that share identical coefficients. In Experiment 2 we consider the sparsely het-

eroskedastic model specification and the restricted versions that are obtained by either set-

ting qα “ qρ “ qσ “ 0 (homogeneous) or qα “ qρ “ qσ “ 1 (fully heterogeneous). The

empirical analysis is based on model M2. Here we consider a homoskedastic version, a het-

eroskedastic version with homogeneous α and ρ coefficients, and a heteroskedastic version

with fully heterogeneous α and ρ coefficients. As for M1 the restricted specifications are

obtained by setting the appropriate ql, l P tα, ρ, σu, σϵu, either equal to zero or one.

Posterior Sampling. We outline a few important aspects of the posterior sampler for

M2. The sampler for M1 is a special case in which there is no latent variable sit. Detailed

descriptions of the posterior samplers are provided in the Online Appendix.5

We use a Gibbs sampler to generate draws from the posterior distribution of the param-

eters pθ, δα, δρ, δσu , δσϵq and the latent states Si,0:T “ tsi0, . . . , siT u. To implement the Gibbs

sampler we use indicator variables zli such that zli “ 0 if δli “ 0 and δli “ 1 otherwise, where

l P tα, ρ, σu, σϵu. Because we found δαi to have a strong a posteriori correlation with Si,0:T

we do not use a Kalman filtering/simulation smoothing step. Instead, we write M2 as

Yi “ Xiα ` Wiβi ` Di,uUi, (20)

where Yi, Xi, and Ui are matrices that stack yit, x
1
it, and uit, respectively. Di is a diagonal

matrix with elements σu,t
a

δi,u and the T ˆpk`T q design matrixWi comprises the regressor

5Posterior computations for the restricted q “ 0 and q “ 1 versions of model M2 have been conducted
by Nakata and Tonetti (2015). Their paper shows through a simulation study that Bayes estimates are
generally more accurate than the GMM/minimum distance estimates that are widely-used in the empirical
literature.
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matrix Xi and time dummies. For instance, if k “ 1 and xit “ 1 such that α is an intercept,

Wi “

»

—

—

—

—

—

–

1 1 0 ¨ ¨ ¨ 0

1 0 1 ¨ ¨ ¨ 0
...

...
...

. . .
...

1 0 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

ffi

fl

“

”

Xi I
ı

(21)

and β1
i “ rδαi , si1, ... , siT s stacks the α discrepancy and the latent states. The prior for βi

combines the prior for δαi with the prior for the latent states generated by the state-transition

equation (15). In case of K “ 1 this leads to

βi|pρ, δ
ρ
i , z

α
i , q

α, vδα , Di,ϵq „ N

˜«

0

0Tˆ1

ff

,

«

zαi vδα 01ˆT

0Tˆ1 V si

ff¸

(22)

zαi |qα “

#

0 with prob. 1 ´ qα

1 with prob. qα
,

where Di,ϵ is a diagonal matrix with elements σϵ,t
a

δσi,ϵ. The pt, τq elements of the T ˆ T

prior covariance matrix V si
can be calculated as follows:

V si
pt, tq “ pρ ` δρi q

2V si
pt ´ 1, t ´ 1q ` σ2

ϵ,tδ
σ
i,ϵ, t “ 1, . . . , T

V si
pt, τq “ pρ ` δρi q

|t´τ |V si

`

minpt, τq,minpt, τq
˘

, t “ 1, . . . , T and τ “ t,

with the understanding that V si
p0, 0q “ vs0 . The conditional posterior distribution of βi is

also a mixture of Normals.

4 Monte Carlo Simulations

In the Monte Carlo experiment we generate panels of observations Y1:N,0:T from model M1

and compute estimates l̂ipY1:N,0:T q of li “ l ` δli, where l P tα, ρu. We evaluate the estimates

based on a quadratic loss function and report a Monte Carlo approximation of the compound

risk
ż ż

˜

1

N

N
ÿ

i“1

`

l̂ipY1:N,0:T q ´ li
˘2

¸

ppY1:N,0:T , l1:N |θ, λqdl1:NdY1:N,0:T . (23)

The Monte Carlo experiment is based on the following algorithm:
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Algorithm 1 (Monte Carlo Simulation)

Given θ, λ, the following two steps are repeated Nsim times:

1. Parameter Draws. Draw tδαi uNi“1, tδρi uNi“1, tδσi uNi“1 from the priors in (2) and (8).

2. Data Simulation. Draw a panel of iid error terms uit for i “ 1, . . . , N and t “

1, . . . , T from the N p0, 1q distribution and generate yi1:T based on (7), starting from

the initial values yi0 “ 0, i “ 1, . . . , N and using the parameter values generated in

Step 1.

3. Estimation and Loss Calculation. Compute the estimators l̂ipY1:N,0:T q for l P tα, ρu

and evaluate the loss
1

N

N
ÿ

i“1

`

l̂ipY1:N,0:T q ´ li
˘2
.

We compare the performance of four posterior mean estimators. The first one is the

spike-and-slab (S&S) estimator defined as

l̂˚i “ Erl ` δli|Y1:N,0:T , λs.

This estimator treats the slab probability q as unknown, but conditions on the hyperparam-

eters λ. Second, the estimator l̂0i sets q
l “ 0, l P tα, ρ, σu, and thereby imposes homogeneity

on all of the coefficients. Third, we compute an estimator l̂1i for a fully heterogeneous esti-

mator that is obtained by setting ql “ 1, l P tα, ρ, σu. Finally, we report the performance of

the oracle estimator that is based on knowing the “true” value of θ:

l̂oi “ Erl ` δli|Y1:N,0:T , θs.

We consider a homoskedastic design (Section 4.1) and a heteroskedastic design (Section 4.2).

4.1 Homoskedastic Design

For the first Monte Carlo experiment we consider a homoskedastic design, i.e., in model

(7) we set qσ “ 0 and δσi “ 1 for all i. Baseline choices for the parameter vector θ and

the hyperparameters are summarized in Table 1. First, consider the elements of θ. We fix

α “ 1.0, set ρ “ 0.6, and let σ2 “ 0.8. In the experiments below we consider various values

for qα “ qρ “ q and vαδ , which control the height of the spike and the width of the slab of
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Table 1: Parameter Values for Monte Carlo

Parameter Vector θ
α ρ σ2 q vδα vδρ vδσ

1.0 0.6 0.8 various .09 1

Hyperparameter Vector λ

vα vρ pνσ, τσq pa, bq pνδα , τ δαq pνδρ , τ δρq pνδσ , τ δσq

1.0 .25 (12,10) (1.0,1.0) (6.0,4.0) (6.0,2.0) (12, 10)

the δαi distribution. The parameter vδρ is set to 0.09. The parameter vδσ is only relevant for

the heteroskedastic design.

Second, consider the elements of λ. We set the variance of α, denoted by vα, equal to

one. Moreover, we let vρ “ 0.25. The hyperparameters for the prior for σ2 imply that

Erσ2s “ 1 and V rσ2s “ 1{4. Our choices of pa, bq imply that q „ U r0, 1s. We choose νδα “ 6

and τδα “ 4, which implies Ervδαs “ 1 and Vrvδαs “ 1. This distribution covers the range

of vδα values in Table 2. Suppose we choose νδρ “ 6 and τδα “ 2. Then, Ervδαs “ 1{2 and

Vrvδαs “ 1{4. The true value of vδρ “ 0.09 can be viewed as a draw from the left tail of this

distribution.

Using Algorithm 1, we generate Nsim “ 100 panel data sets of size N “ 500 and T “ 8.

For each panel data set we generate 5,000 parameter draws from the posterior distribution,

discard the first 2,500 draws, and use the remaining draws to compute the posterior mean

estimates l̂ipY1:N,0:T q. Simulation results are summarized in Table 2. In the top half of the

table we report mean squared errors (MSEs) for the estimates α̂i of αi “ α ` δαi for various

combinations of pvδα , qq and in the bottom half MSEs for ρ̂i. During the estimation we do

not restrict qα to be equal to qρ. Thus, the members of the core α and ρ groups are not

required to be the same. Formally, we do not impose the restriction that zαi “ zρi for all i.

For q “ 0 the Bayes estimator with S&S achieves the performance of the estimator

l̂0i that imposes coefficient homogeneity, and for q “ 0.8 and q “ 1 its compound risk

is approximately equal to the risk associated with the estimate l̂1i that treats li as fully

heterogeneous. For values of q P t0.2, 0.4, 0.6u the S&S estimator achieves a lower MSE than

the estimators that impose full homogeneity or full heterogeneity. Overall, l̂˚i is equal or

smaller than the risk of the best estimator among l̂0i and l̂1i . The risk differentials between

the fully homogeneous and fully heterogeneous estimators is increasing in vαδ and the risk

patterns are similar for the estimation of l “ αi and l “ ρi. As a benchmark, we also
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Table 2: Monte Carlo Experiment 1: Homoskedasticity

Estimators qα “ qρ “ q

0 0.2 0.4 0.6 0.8 1.0

vδα MSE for Estimates α̂i of αi “ α ` δαi

0.05 S&S 0.001 0.012 0.021 0.030 0.038 0.047
q = 0 0.001 0.521 0.954 1.204 1.362 1.481
q = 1.0 0.052 0.038 0.037 0.040 0.045 0.050
Oracle 0.000 0.009 0.018 0.026 0.034 0.042

0.5 S&S 0.001 0.050 0.093 0.136 0.174 0.204
q = 0 0.001 0.691 1.194 1.537 1.750 1.945
q = 1.0 0.052 0.070 0.108 0.144 0.175 0.202
Oracle 0.000 0.048 0.088 0.126 0.161 0.188

1.0 S&S 0.001 0.067 0.130 0.198 0.255 0.300
q = 0 0.001 0.857 1.433 1.870 2.169 2.460
q = 1.0 0.052 0.118 0.183 0.229 0.263 0.289
Oracle 0.000 0.063 0.120 0.176 0.224 0.258

vδα MSE for Estimates ρ̂i of ρi “ ρ ` δρi

0.05 S&S 0.000 0.008 0.014 0.018 0.021 0.024
q = 0 0.000 0.156 0.292 0.380 0.444 0.497
q = 1.0 0.015 0.016 0.018 0.020 0.022 0.024
Oracle 0.000 0.008 0.013 0.017 0.021 0.023

0.5 S&S 0.000 0.009 0.017 0.024 0.031 0.037
q = 0 0.000 0.175 0.306 0.393 0.449 0.499
q = 1.0 0.015 0.014 0.019 0.024 0.030 0.036
Oracle 0.000 0.009 0.016 0.023 0.029 0.035

1.0 S&S 0.000 0.009 0.018 0.026 0.034 0.041
q = 0 0.000 0.190 0.315 0.400 0.452 0.501
q = 1.0 0.015 0.014 0.021 0.027 0.033 0.040
Oracle 0.000 0.009 0.017 0.024 0.031 0.037

Notes: In this simulation we use N “ 500, T “ 8, and Nsim “ 100. The choices for pθ, λq are summarized
in Table 1.

result the risk of the oracle estimator that is obtained by conditioning on the “true” θ.

By construction the oracle estimator dominates the Bayes estimator l̂˚i , but overall the risk

differentials are relatively small which means that θ is generally well estimated.

In the top and center panels of Figure 1 we plot histograms of the cross-sectional distri-

bution of the posterior mean estimates α̂˚
i and ρ̂

˚
i obtained conditional on data sets simulated

with q “ 0.2 and q “ 0.8, respectively. Unlike the results reported in Table 2, the histograms

are generated from a single Monte Carlo iteration and not averaged across Nsim runs. For



This Version: October 20, 2023 15

Figure 1: Histograms of Posterior Means for l̂˚i and Posterior Densities for q
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Notes: We adjust the posterior means for δli in the following way: if more than 80% of posterior draws for δli
are 0 (l “ α, ρ), then we assume δ̂li “ 0 (l “ α, ρ) . The plots in the last row overlay a Bp1, 1q prior density
for qli (black, dotted) and posterior densities for qα (blue, solid), and qρ (red, solid). The choices for pθ, λq

are summarized in Table 1. We set vδα “ 0.5.

q “ 0.2 the histogram of posterior means inherits the spike-and-slab shape of the prior

distribution with a distinct spike near the “true” values of α and ρ, which are 1.0 and 0.6,

respectively; see Table 1. For q “ 0.8 the spike in the distribution of posterior means is much

less pronounced and there is a lot more mass away from α “ 1.0 and ρ “ 0.6. Finally, we

plot the posterior densities for the slab probabilities qα and qρ. While there is considerable

uncertainty about q, the densities peak near the “true” values of 0.2 and 0.8, respectively.
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4.2 Heteroskedastic Design

In the second Monte Carlo design we allow for heteroskedasticity by setting qσ “ q and

sampling δσi from (8). Recall that we imposed Erδσi s “ 1. To generate the data we let

vδσ “ Vrδσi s “ 1. The hyperparameters for the vδσ prior imply that Ervδσ s “ 1 and Vrvδσ s “

1{4. In all other aspects, the experiment is configured in the same as the homoskedastic

experiment in Section 4.1.

Results for the MSE of α̂i are presented in Table 3. We consider two S&S estimators:

(hetsk) is based on the heteroskedastic version of the benchmark model which is the cor-

rectly specified model in light of the data generating process (DGP). (homsk) is based on

the misspecified homoskedastic version of the benchmark model, i.e., δσi “ 0. The results are

similar to the ones obtained in the first experiment. For q P t0.2, . . . , 0.8u the S&S(hetsk)

estimator dominates the estimators obtained under full homogeneity, q “ 0, and full hetero-

geneity, q “ 1. The S&S(homsk) generally performs poorly, except for q “ 0, when there

is no heteroskedasticity. Thus, ignoring the heteroskedasticity generates imprecise estimates

also of the conditional mean parameters.

Figure 2 extends the results shown in Figure 1 to the heteroskedastic design. As before,

we plot histograms of the cross-sectional distribution of the posterior mean estimates, which

now include σ̂˚
i . As for the homoskedastic design, for q “ 0.2 the cross-sectional distributions

of the estimators inherit the spike-and-slab shape of the prior distribution, which is more

pronounced for α̂˚
i and ρ̂˚

i than for σ̂2˚
i . The distributions of posterior means are generally

centered near the “true” values of the homogeneous parameters.

5 Empirical Analysis

We now use model M2, comprising (14) and (15), to estimate income profiles from the PSID

data. ModelM2 captures some of the key features of the empirical specifications considered in

the literature over the past four decades; see for instance the model specification discussion

in the survey paper Browning and Ejrnjes (2013). These features include a deterministic

income component x1
itα, and persistent and transitory stochastic components, sit and uit,

respectively. We allow for potential heterogeneity in the α vector, the autocorrelation ρ of

the persistent component, and the shock standard deviations.

More specifically, we let

xit “ r1, hit{10s
1, (24)
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Table 3: Monte Carlo Experiment 2: Heteroskedasticity

Estimators qα “ qρ “ qσ “ q

0 0.2 0.4 0.6 0.8 1.0

vδα MSE for Estimates α̂i of αi “ α ` δαi

0.05 S&S(hetsk) 0.001 0.012 0.022 0.031 0.040 0.049
S&S(homosk) 0.001 0.014 0.026 0.041 0.055 0.070
q = 0 0.001 0.529 0.895 1.116 1.313 1.459
q = 1.0 0.077 0.056 0.051 0.051 0.053 0.056
Oracle 0.000 0.009 0.018 0.026 0.034 0.041

0.5 S&S(hetsk) 0.001 0.051 0.095 0.135 0.170 0.198
S&S(homosk) 0.001 0.053 0.101 0.148 0.190 0.224
q = 0 0.001 0.691 1.138 1.467 1.726 1.950
q = 1.0 0.077 0.078 0.108 0.141 0.170 0.195
Oracle 0.000 0.048 0.088 0.126 0.159 0.184

1.0 S&S(hetsk) 0.001 0.067 0.134 0.198 0.259 0.295
S&S(homosk) 0.001 0.069 0.141 0.215 0.304 0.353
q = 0 0.001 0.852 1.381 1.813 2.156 2.474
q = 1.0 0.077 0.120 0.183 0.229 0.260 0.283
Oracle 0.000 0.063 0.121 0.176 0.222 0.254

vδα MSE for Estimates ρ̂i of ρi “ ρ ` δρi

0.05 S&S(hetsk) 0.000 0.008 0.014 0.018 0.021 0.023
S&S(homosk) 0.000 0.008 0.014 0.019 0.022 0.025
q = 0 0.000 0.158 0.278 0.359 0.433 0.493
q = 1.0 0.018 0.018 0.019 0.021 0.022 0.024
Oracle 0.000 0.008 0.013 0.017 0.020 0.022

0.5 S&S(hetsk) 0.000 0.009 0.017 0.025 0.031 0.038
S&S(homosk) 0.000 0.010 0.018 0.026 0.034 0.041
q = 0 0.000 0.175 0.293 0.377 0.443 0.500
q = 1.0 0.018 0.015 0.019 0.025 0.031 0.037
Oracle 0.000 0.009 0.016 0.023 0.030 0.036

1.0 S&S(hetsk) 0.000 0.010 0.018 0.027 0.036 0.043
S&S(homosk) 0.000 0.010 0.019 0.029 0.042 0.051
q = 0 0.000 0.189 0.303 0.386 0.448 0.504
q = 1.0 0.018 0.015 0.021 0.028 0.034 0.041
Oracle 0.000 0.009 0.017 0.024 0.032 0.038

Notes: In this simulation we use N “ 500, T “ 8, and Nsim “ 100. The hyperparameter settings are
summarized in Table 1.

where hit represents experience of individual i in period t, defined as age minus years of

education minus six. We partition the 2 ˆ 1 vector α “ rα0, α1s. We also divide experience
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Figure 2: Histograms of Posterior Means for δ̂i and Posterior Densities for q
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Notes: We adjust the posterior means for δli in the following way: if more than 80% of posterior draws for δli
are 0 (l “ α, ρ) or 1 (l “ σ), then we assume δ̂li “ 0 (l “ α, ρ) or 1 (l “ σ). The plots in the last row overlay
a Bp1, 1q prior density for qli (black, dotted) and posterior densities for qαi (blue, solid), qρi (red, solid) and
qσi (green, solid). The choices for the hyperparameter vector are summarized in Table 1.

by 10 to scale α1 and improve the numerical performance of the posterior sampler. If

δαi “ 0 for all i, then income profiles are homogeneous, which was previously labeled RIP

and has been the preferred specification of Lillard and Weiss (1979), Hause (1980), Baker
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Table 4: Restricted Model Specifications

Label Restrictions
M2(homosk) qσu “ qσϵ “ 1; δσui “ δσϵi “ 0 for i “ 1, . . . , N
M2(RIP) qα “ qρ “ 0; δαi “ δρi “ 0 for i “ 1, . . . , N
M2(HIP) qα “ qρ “ 1

(1997), Haider (2001), Hryshko (2012), and Hoffmann (2019). The case of δαi “ 0 for all

individuals, corresponds to the HIP specification considered in the literature and is favored

by, for instance, MaCurdy (1982), Abowd and Card (1989), and Guvenen (2007, 2009).

Unlike the previous literature, our model considers a third option, under which heterogeneity

is potentially sparse: δαi “ 0 for some, but not all, individuals.

Income has a persistent and a transitory stochastic component. The persistent compo-

nent is given by an AR(1) process sit with autocorrelation coefficient ρ and the transitory

component is represented by the iid process uit. Through δ
σ
i,u, δ

σ
i,ϵ “ 0 we allow income risk

to be heterogeneous across agents. In addition, the standard deviations σu,t and σϵ,t are

time dependent, which can capture business cycle fluctuations and trends in idiosyncratic

risk. Finally, we allow for idiosyncratic autocorrelations ρi which is typically not done in

the literature, an exception being Browning, Ejrnjes, and Alvarez (2010) and Browning and

Ejrnjes (2013).

There are a few model features that have been explored in the literature that we do not

include in M2 to keep the model parsimonious: a third stochastic component that features

a unit root, idiosyncratic autoregressive conditional heteroskedasticity (see, for instance,

Meghir and Pistaferri (2004) for both features), time variation in the returns to experi-

ence (e.g., Haider (2001)), or age effects in the variances of the idiosyncratic shocks (e.g.,

Hoffmann (2019)). In addition to M2 itself we consider three restricted versions: one with-

out heteroskedasticity, one with homogeneous slope parameters (RIP), and one with fully

heterogeneous slope parameters (HIP). A summary is provided in Table 4.

Some authors have emphasized, for instance, cohort effects on earnings, education effects

on earnings profiles, or age-dependent persistence in earnings. While we are not explicitly

controlling for this type of heterogeneity through sample splitting or interaction terms, it

can be captured a posteriori by estimates of δi that are different from zero.

Much of the previous literature has used (simulated) minimum-distance estimation of a
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subset of the parameters that we collect in the vector θ, which involves minimizing the dis-

crepancy between sample moments and model-implied moment. Typically, these moments

are time-dependent autocovariances that are computed by cross-sectional averaging across

all individuals in the panel. In a few instances, researcher have also used moments computed

from unit-specific time series; see Browning and Ejrnjes (2013). Our likelihood-based estima-

tion approach aims at tracking individual earnings histories, which implicitly encompasses

both time series and cross-sectional moments. This approach has several advantages. In

particular, we are easily able to handle non-Normalities introduced by the S&S prior and

the cross-sectional heteroskedasticity. Morever, in addition to parameters that characterize

the distribution of coefficients across agents, we can also make inference about the unit-

specific coefficients themselves, and subsequently generate predictions about future income

for individual units.

5.1 Data Set

The empirical analysis is based on the PSID. We use raw data from 1968 to 1997, starting

from 32,465 observations for 2,052 individuals. Up to 1997 the PSID data are annual, whereas

subsequently the survey was conducted only biennially. The data set used for estimation is

constructed following the conventions of the literature, e.g., Meghir and Pistaferri (2004).

The dependent variable is log real income of all sources, including: wages and salaries;

bonuses, overtime, and/or commissions; income from professional practice and trade; the

labor part of farm income and unincorporated business income; the labor portion of income

from farming, market gardening, roomers and boarders. Nominal wages are converted into

real wages, using the PCE deflator (base = 1993). We take account of the fact that the

measure of income refers to the previous calender year. We eliminate observations with

outlying earnings records, defined as a change in log real earnings greater than two or less

than minus one.

As is common in the literature, we restrict the sample to male heads of household and

keep individuals between ages 25 and 55.6 To avoid oversampling low-income households,

members from the Survey of Economic Opportunity (SEO) are removed. We also drop

the members of the Latino sample added in 1990 and self-employed individuals. We keep

individuals who are in the labor force, have positive labor income, and have been in the

6If the household age is inconsistent across years, we compute the mode of the differences between reported
age and year across periods. Age is then defined as the year plus the mode.
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Figure 3: Unbalanced Panel

Units Per Period Periods in Panel

sample for at least nine years. We remove individuals with missing race, marital status,

region, state, and education information. In a first-stage regression we project log income on

year dummies, and indicators for race, educational group,7 region of residence, and marital

status. The variable yit is the residual from this regression. We refer to the resulting panel

data set as the full sample.

Based on the full sample, we construct estimation samples. The first set of estimation

samples are balanced panels, denoted by BT,τ , and used for the analysis in Sections 5.3

and 5.4. The balanced panels have a time dimension of T ` 1 and include only individuals

for which T ` 1 observations are available. Typically, we use the first T time periods in

these samples for estimation and reserve the last time period, t “ T ` 1, for one-step-ahead

forecast evaluation. The index τ refers to the year that corresponds to period T ` 1. For

instance, the sample B20,1991 starts in 1971 (t “ 1) and ends in 1991 (t “ 20 ` 1).

In addition to the balanced sample, we also estimate model M2 and its variants based

on an unbalanced sample U in Section 5.5. The unbalanced sample is similar to the full

sample described above, except that we require that individuals have at least nine consecutive

observations. Figure 3 provides some information about the composition of U . The left panel
of the figure shows the cross-sectional dimension as a function of time. In 1968 it covers

approximately 500 units. The number of units rises above 1,100 in 1988 and then declines

to 800 in 1995. The right panel provides information about how long units stay in the panel.

The modal duration is 10-12 years, but approximately 330 units stay for more than 20 years.

7High School dropouts: (those with less than 12 grades of schooling); High School graduates (those with
at least a High School diploma, but no College degree); College graduates (those with a College degree or
more)
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Table 5: Prior Distribution for θ

Para Distr. a b 5% 95 %

α N pa, bq 0

„

1 0
0 1

ȷ

-1.64
-1.64

1.64
1.64

ρ N pa, bq 0.8 1 -0.84 2.44
σ2
u,t IG

`

a{2, b{2
˘

6 0.2 0.02 0.12
σ2
ϵ,t IG

`

a{2, b{2
˘

6 0.2 0.02 0.12
ql, l P tα, ρ, σu, σϵu Bpa, bq 1 1 0.05 0.95

vδα IW pa, bq 5.05

„

0.5 0
0 0.1

ȷ

0.05
0.01

0.68
0.14

vδρ IG
`

a{2, b{2
˘

16.5 3.625 0.13 0.44
vδσl , l P tu, ϵu IG

`

a{2, b{2
˘

12 10 0.48 1.91
µs0 N pa, bq 0 0.05 -0.37 0.37
vs0 IG

`

a{2, b{2
˘

6 0.2 0.02 0.12

Notes: N pa, bq is the Normal distribution, IGpa, bq is the Inverse Gamma distribution, Bpa, bq is the Beta
distribution, and IW pa, bq is the Inverse Wishart distribution. The last to columns contain the 5th and 95th
percentile of the marginal prior distributions. For IG priors: pa, bq “ p6, 0.2q implies a mean of 0.05 and a
variance of 0.05; pa, bq “ p16.5, 3.625q implies a mean of 0.25 and a variance of 0.1; pa, bq “ p12, 10q implies
a mean of 1 and a variance of 0.5.

A priori, we expect coefficient heterogeneity to be more prevalent in the unbalanced sample

U than in the balanced samples BT,τ .

5.2 Prior Distribution

Table 5 summarizes the marginal prior distributions for the elements of θ. We are assuming

that the elements are a priori independent, such that the joint distribution is the product

of the marginals. In addition to the pa, bq parameterization of the prior, we also report the

5th and 95th percentiles, which delimit the 90% equal-tail probability credible intervals.

The prior for α is centered at zero with a variance of one. Recall that we divided

experience by ten, which means that a value of α1 “ 0.2 implies a return to a year of

experience of 0.2{10 “ 0.02, or two percent. Thus, the 90% a priori credible interval covers

all reasonable and some unreasonable values for the return to experience. The marginal

distribution of ρ is centered at 0.8, representing an a priori belief that the idiosyncratic

income process sit is fairly persistent. The variance of one implies that the prior does not

have a lot of curvature in the range of 0.6 to 1.0, which covers the estimates obtained in
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previous studies. We do allow for explosive dynamics a priori, but turn out to be extremely

unlikely under the posterior.

The 90% credible interval for the innovation variances reaches from 0.02 to 0.12. Note

that our prior implies that they are independent across time periods, because in our panel

data set we want to identify the variances from the cross-sectional information. Our prior

for µs0 and vs0 implies that si0 has mean zero, which is the long-run mean of sit provided

that ρ is less than one. Moreover, si0 falls in the interval -1.0 to 1.0 with high probability.

The prior for the probabilities of not belonging to the core group, ql, are uniform on the

unit interval. The prior for the deviation variance vδα implies that the covariance matrix of

the α deviations is diagonal with values 0.24 and 0.048. At 0.048, the 95% credible interval

for δα1{10 ranges from roughly -0.044 to 0.044.8 The prior for vδσl implies that an individual

at the 5th percentile at the prior has an idiosyncratic shock variance that is one fourth of

that of someone at the 95th percentile.

5.3 Parameter Estimates (Balanced Panels)

Idiosyncratic Parameters. Of particular interest are the estimates of the idiosyncratic

parameters and the degree of heterogeneity they exhibit. The results are summarized in

Figure 4. The figure shows posterior estimates for α0i, α1i, ρi, δ
σ
i,u, and δ

σ
i,ϵ for two samples

BT,τ . The panels in the left column correspond to τ “ 1988 and the panels in the right

column to τ “ 1991. In both cases T “ 20. We depict posterior medians (solid blue lines),

means (dashed red lines), and 90% credible intervals (light blue bands). Units are sorted

based on posterior median estimates. As discussed in Section 2, posterior median estimates

of δli can deliver exact zeros. To highlight the potential sparsity implied by the posterior

medians of δli, we plot medpl|Y1:N,1:T q ` medpδli|Y1:N,1:T q instead of medpl` δli|Y1:N,1:T q in the

first three rows for l P tα0, α1u.

Sparse heterogeneity manifests itself through a long flat section of the posterior median

line. For instance, the τ “ 1988 sample consists of 82 observations. The number of units with

medpδli|Y1:N,0:T q “ 0 is 74 for α. Thus, the αis feature sparse heterogeneity. From examining

the posterior distribution of the α1is, which are divided by 10 to undo the rescaling of

experience in (24), we find that some units have a return experience that is up to 0.5

percentage points less than that of the core group, whereas others have a return that is

8The credible interval for the off-diagonal element of vδα ranges from -0.1 to 0.1.
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Figure 4: Posterior for Idiosyncratic Parameters, M2, T “ 20

τ “ 1988 τ “ 1991

α
0
i

α
1
i{
10

ρ
i

δσ i
,u

δσ i
,ϵ

Notes: Solid blue lines in first three rows are medpl|Y1:N,1:T q`medpδli|Y1:N,1:T q. In the bottom two rows they
are medpδσi |Y1:N,1:T q. The dashed red lines are posterior means and the light blue bands are 90% credible
bands.

up to 1.5 percentage points above that of the core group. The τ “ 1991 sample has more

heterogeneity in the α dimension, with only 32 out of 88 units having medpδαi |Y1:N,0:T q “
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Figure 5: Posterior Densities for the Sizes of α and ρ Group, M2, T “ 20

τ “ 1988 τ “ 1991

Notes: The number of units is N “ 82 for the 1988 sample and N “ 88 for the 1991 sample.

0. Unlike the posterior median curves, the posterior mean curves have generally no flat

segments, because the posterior means of δαi are never exactly equal to zero.

For the autocorrelation and the two shock variances a different picture emerges. For ρ

essentially all units have medpδli|Y1:N,0:T q “ 0, meaning that the autocorrelations are homo-

geneous, whereas for the variances essentially all of the units have medpδli|Y1:N,0:T q “ 1 (recall

the different centering of the variance discrepancies). Thus, the σ2
i s are fully heterogeneous,

meaning there is strong cross-sectional heteroskedasticity, a point that is also emphasized,

for instance, by Gu and Koenker (2017b).

Figure 5 shows posterior densities for the sizes of the α and ρ core groups, defined as

N ´ E
“
řN
i“1 z

l
i |Y1:N,0:T

‰

. The posterior modes of the ρ core group sizes are 80 (out of 82)

and 82 (out of 88), respectively. For the 1988 sample the posterior histogram for the size

of the α group peaks at around 70, but the probability mass is spread out between zero

(homogeneity) and 82 (full heterogeneity). In the 1991 sample, the probability mass for the

α core group size shifts to the left and much of it lies between 0 and 30. We do not plot the

distribution of the σ group sizes, as it is clear from Figure 4 that there are no core groups

and the coefficients are fully heterogeneous.

Posterior Distribution of θ. Table 6 summarizes the posterior median and 90% highest

posterior density (HPD) estimates for the elements of the θ vector. The point estimates

and credible intervals for ql line up with the information in Figures 4 and 5. The posterior

medians of qσu and qσϵ are close to one and those for qρ are close to zero. The posteriors for

qα are more spread out. For the 1988 sample the 90% credible set ranges from 0 to 0.84 and

for 1991 from 0.53 to 1.
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Table 6: Posterior Distribution for θ, M2, T “ 20

τ “ 1988 τ “ 1991
Para Median HPD Median HPD
α0 -0.23 [-0.30, -0.18] -0.18 [-0.25, 0.11]
α1{10 .018 [.015, .021] .014 [.011, .017]
ρ 0.97 [0.91, 1.00] 0.90 [0.84, 0.95]
µs0 0.00 [-0.06, 0.06] -0.01 [-0.06, 0.04]
vs0 0.03 [0.01, 0.06] 0.02 [0.01, 0.04]
qα 0.34 [0.00, 0.84] 0.81 [0.53, 1.00]
qρ 0.04 [0.00, 0.12] 0.05 [0.00, 0.12]
qσu 0.97 [0.94, 1.00] 0.98 [0.95, 1.00]
qσϵ 0.97 [0.93, 1.00] 0.97 [0.92, 1.00]
vδα0 0.08 [0.03, 0.21] 0.05 [0.02, 0.07]
vδα1{100 .0002 [.0001, .0004] .0001 [.0001, .0002]
vδρ 0.21 [0.11, 0.35] 0.20 [0.10, 0.33]
vδσu 6.97 [2.76, 12.59] 8.36 [3.40, 16.27]
vδσϵ 4.58 [1.63, 8.87] 5.95 [2.26, 11.23]

Notes: We report 90% posterior HPD intervals. The α1 and vδα1 are re-scaled to undo the division of
experience by 10 in the definition of xit, see (24).

As in Figure 4, we rescale the α1 (and vδα1 ) entries in the table to undo the division

of experience by 10 in the definition of xit in (24) and to facilitate its interpretation. For

the 1988 sample the posterior median estimate of the return to an additional year of expe-

rience is 1.8%. It is 1.4% for the 1991 sample. Both the time-series and the cross-sectional

variation contributes to the identification of the return to experience. Examining the cross-

sectional distribution of experience at the beginning of the 1988 sample, we find that the

25th percentile is seven years of experience, the median is ten years, and the 75th percentile

is thirteen years. For the 1991 sample these numbers are very similar.

The size of the discrepancy δαi from the α value of the core group is controlled by the

matrix vδα . We report posterior summary statistics for the diagonal elements. For the 1988

sample, the posterior credible interval for vδα0 ranges from 0.03 to 0.21. The interval for vδα1
(divided by 100) extends from .0001 to .0004. To put these estimates into perspective we

provide a comparison to Guvenen (2009), who reports a vδα0 estimate of .022 with a standard

error of .074, and a vδα1 estimate of .00038 with a standard error of 0.0008. Hryshko (2012)

reports v̂δα1 “ .0004. These estimates are based on a different subset of the PSID data and

obtained from a different estimation procedure. Our vδα0 estimate is slightly higher, and the

vδα1 estimate is slightly lower than those obtained in the two earlier papers, but intervals
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Figure 6: Effect of α Heterogeneity on Income Inequality, B20,1988 Sample

Notes: We plot 1 ´ Vtpδ
α “ 0q{Vt (solid blue line) and 1 ´ Vtpu “ 0q{Vt (solid red line) defined in the main

text.

overlap.

The HPD interval for the autocorrelation parameter ρ ranges from 0.91 to 1.00 for the

1988 sample and from 0.84 to 0.95 for the 1991 sample. Guvenen (2009) obtains ρ̂ “ 0.988

for RIP specification with homogeneous coefficients, and 0.82 for the HIP model with fully

heterogeneous coefficients. Our posterior medians of 0.97 and 0.9 are in between those esti-

mates. The τ “ 1988 features less heterogeneity in the experience profiles and is therefore

closer to Guvenen’s RIP model, whereas the 1991 one sample exhibits more heterogeneity

in the αis. Thus, we are able to reproduce the finding that homogeneous coefficient specifi-

cations are associated with more persistence in the stochastic component that is persistent.

Because the estimated qρ is close to zero, the sample contains hardly any information about

vδρ and the posterior is close to the prior.

The estimated mean of the initial state si0 is zero. Using the posterior median for vs0

from the 1988 sample and ignoring the estimation uncertainty, the standard deviation of si0

is 0.17. A second back-on-the-envelope calculation using posterior median estimates of ρ, vδσϵ

and the average level of σ2
ϵ,t in Figure 7 below, leads to an unconditional standard deviation

of sit of 1.25. Thus, focusing on a particular cohort, over time the income inequality due

to the persistent stochastic component increases. This also shows up in the cross-sectional

dispersion of the posterior mean estimates ŝit, when comparing period t “ 1 to t “ T “ 20:

the estimates range from -0.2 to 0.2 at the beginning of the sample, and from -1 to 1 at the

end of the sample.
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Figure 7: Evolution of Average Idiosyncratic Volatility

σ2
u,t σ2

ϵ,t

Notes: Posterior means and 90% credible intervals. Blue: τ “ 1988; Red: τ “ 1991. Grey shading denotes
NBER-dated recessions.

Using our estimates, we can decompose income inequality in a cohort into the contribution

of return to experience heterogeneity and heterogeneity in the ex post realization of the

persistent stochastic process sit. To construct the decomposition, we simulate a cohort of

N “ 10, 000 individuals for T “ 20 periods from the model M2 using the posterior mean

estimates presented in Figure 4 and Table 6. The cohort starts with an experience of hi1 “ 1.

We subsequently conduct two more simulations in which we set either the return to experience

heterogeneity δαi or the transitory shock variances σ2
u,t to zero, but use the same innovations

as in the baseline simulation. We measure inequality as the cross-sectional variance of log

income. For the baseline simulation, this variance is denoted by Vt, and for the alternative

simulations they are denoted by Vtpδ
α “ 0q and Vtpu “ 0q.

The ratio rVt ´ Vtpδ
α “ 0qs{Vt for the B20,1988 sample is plotted in Figure 6 as solid

blue line. Recall that q̂α “ 0.34. Initially, return to experience heterogeneity, due to the

individuals deviating from the core group, explains about 40% of income inequality in the

cohort. However, the share drops quickly and after seven years α heterogeneity is irrelevant

and income inequality is solely due to the stochastic income components. The red line

corresponds to the relative effect of the transitory shock on inequality. Initially, its is about

15% but it also quickly converges to zero. Thus, after seven years, inequality is essentially

solely due to the persistent idiosyncratic income shocks.

Time-path of Average Idiosyncratic Income Risk. Figure 7 depicts posterior means

and credible intervals for σ2
u,t and σ

2
ϵ,t as a function of time. We overlay the posteriors for the

two samples: τ “ 1988 and τ “ 1991. Years with quarters that were classified by the NBER
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Figure 8: Characteristics of Core Group vs. Deviators, B20,1991 Sample

Age Years of Education

Mean of Hourly Earnings Std. of Residual Income

Notes: Top panels: bar charts represent histograms for core group and deviators. Bottow panels: histograms
for deviators and density estimates for core group.

as recessions are indicated by the grey shaded areas. It is important to note that that the

cross sections for the two panels in any particular year are not identical. This explains the

variation in the estimates of the year-specific standard deviations.

While the volatility spikes do not line up perfectly with the NBER recessions, there is a

positive correlation. For the 1988 sample σ2
u,t spikes in the 1970, 1974, and 1982 recessions.

On the other hand, it does not spike in the 1980 recession, but does have a pronounced peak

during the recovery in 1984. The innovation variance σ2
ϵ,t peaks in 1970 and 1980, but not

in the other recessions. Note that individuals in our sample are always employed. Thus, we

are not capturing unemployment risk, which contributes to the cyclical variation of income

risk.

How Are Deviators Different? In Figure 8 we compare characteristics of the core group

members and the deviators. The top panels show two histograms and the bottom panels
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show a histogram and a density estimate. In terms of the age distribution and years of

education the core group and deviators are quite similar. The core group contains slightly

fewer individuals below the age of 50 and not as many individuals of age 54, but if the

information is aggregated to a bin width of two or three years, many of these differences

would vanish. The same is true for years of education. The distribution of time series means

(computed prior to projecting onto demographics) for the deviators and the core group also

look quite similar, except for the presence of a few high(er) income individuals among the

deviators. A similar pattern emerges for the time series standard deviation of the residual

income after projecting it unto the demographics. Overall, in terms of the distribution of

age, years of education, mean earnings, and standard deviation of earnings residuals the core

group members and deviators look quite similar.

5.4 Prediction (Balanced Panels)

We now examine the predictive properties of our estimated models. We consider two types

of analyses. In the first part, we use the predictive performance as a way of assessing several

restricted versions of modelM2. For a given sample BT,τ , we estimate the model specifications

based on data up to period T and then we forecast income in period T `1 for the individuals

i “ 1, . . . , N and evaluate the accuracy of the predictions, averaging across all individuals.

In the second part of this section we examine the prediction problem from the perspective

of an individual who would like to forecast her/his income to make economic decisions, e.g.,

a consumption/savings decision.

Assessing Model Specifications Using Predictive Performance. In Table 4 we listed

three variants of the baseline modelM2: M2(homosk), M2(RIP), andM2(HIP). Our pseudo-

out-of-sample approach to compare competing model specifications is different from what

is typically done in the income-dynamics literature. Since a large number of authors have

estimated the income models using minimum-distance techniques, e.g., by minimizing the

discrepancy between sample autocovariances yCovryit, yi,t´hs and the model-implied popula-

tion analogues, it is natural to consider tests of the hypothesis vδα “ 0. In our Bayesian

setting we could in principle use posterior odds tests of ql “ 0 versus ql ą 0, but because the

income processes are often embedded in life-cycle models in which agents have to predict

their future income to make optimal decisions, we directly focus on the pseudo-out-of-sample

performance.
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Figure 9: One-Step-Ahead Predictive Performance Relative to M2, T “ 20, various samples
τ

Relative Change in MSE [%] LPS Differential

Notes: Samples τ are sorted by the value of LPS for M2(RIP) in both panels. Negative values indicate an
improvement. M2(homosk), blue plus; M2(RIP), dark green cross; M2(HIP), brown asterisk. The 1988 and
1991 samples are ranked 4th and 6th, respectively.

We estimate the model specifications for a sequence of samples BT,τ , starting with τ “

1988 and ending with τ “ 1996. Throughout, we consider T “ 20. The forecast evaluation

approach is essentially the same as in Liu, Moon, and Schorfheide (2020), Liu, Moon, and

Schorfheide (2023), and Liu (2023). As evaluation criteria we consider mean-squared-error

(MSE) statistics and log predictive scores (LPS). The MSEs are computed as in Step 3 of

1 and the LPS are defined as 1
N

řN
i“1 ln p̂pyiT`1|Y1:N,1:T q, where p̂p¨q is the predictive density

with a particular model specification.

The results are summarized in Figure 9. In the left panel of the figure we show relative

changes in MSEs [%] defined as 100¨
`

MSEpM2pxxxqq´MSEpM2q
˘

{MSEpM2q, whereM2pxxxq

is one of the alternative specifications in Table 4. Thus, a negative value indicates that model

M2pxxxq attains a lower MSE than the benchmark model M2. The LPS differentials are

defined such that a negative value is an improvement, meaning that we report LPSpM2q ´

LPSpM2pxxxqq. To convert them into predictive log odds, they would have to be multiplied

by the cross-sectional dimension N , which various across samples but is between 82 and 127.

We draw the following conclusions from Figure 9. First, the fully heterogeneousM2(HIP)

specification has a larger MSE than the baseline model M2 for eight out of nine samples.

Moreover, in terms of the LPS, M2 clearly dominates M2(HIP). Second, there are only three

samples for which M2(homosk) attains a lower MSE than M2. In the other six samples
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Table 7: Prior Distribution for θ

Para Distr. a b

δαi N pa, bq 0

„

0.24 0
0 0.05

ȷ

δρi N pa, bq 0.8 0.25
δσi,u IG

`

a{2, b{2
˘

4.02 0.101
δσi,ϵ IG

`

a{2, b{2
˘

4.02 0.101
si0 N pa, bq 0 0.05

Notes: N pa, bq is the Normal distribution, IGpa, bq is the Inverse Gamma distribution, Bpa, bq is the Beta
distribution, and IW pa, bq is the Inverse Wishart distribution. The last to columns contain the 5th and 95th
percentile of the marginal prior distributions. For IG priors: pa, bq “ p4.02, 0.101q implies a mean of 0.05
and a variance of 0.5.

M2 delivers more accurate point forecasts. More importantly, the density forecasting per-

formance of M2(homosk) is dismal compared to M2. This confirms that the cross-sectional

heteroskedasticity is an important feature of the data. Finally, M2(RIP) delivers a similar

point forecast performance asM2 in five and a similar LPS in six out of nine samples. In the

remaining samples M2(RIP) slightly dominates the baseline model. This is not surprising,

because as we have seen in Section 5.3 regression coefficient heterogeneity is generally quite

sparse and imposing a restriction that is not quite correct often favorably trades off a slight

increase in bias against a variance reduction.

Forecasting From an Individual’s Perspective. We previously generated simultaneous

forecasts for all units to compare the predictive ability of competing model specifications.

Now we consider the forecasting problem from the perspective on a particular individual i.

We consider three different interval forecasts. The baseline forecast of individual i conditions

on the information Y1:N,0:T and accounts for parameter uncertainty. Chamberlain and Hirano

(1999) interpret this scenario as9 “an individual seeking advice from a financial planner. The

individual provides data on his earnings history and on various personal characteristics such

as age and education. The planner has access to longitudinal data sets that provide data on

earnings histories and personal characteristics for samples of individuals.” (Abstract, Page

211) The second set of interval forecasts is also based on the Y1:N,0:T information, but we

shut down the parameter uncertainty by fixing pδ, θq at the posterior mean estimates.

Third, we generate forecasts based on the time series information of individual i: Yi,0:T .

To obtain forecasts based on Yi,0:T , Equations (14) and (15) of model M2 are re-estimated

9This setup is also considered by Gu and Koenker (2017b).
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Figure 10: Individual Earnings Forecasts, B20,1991 Sample

ID 74 (δα “ 0) ID 59 (δα ‰ 0)
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Notes: Forecast origin is period t “ T “ 20. Pointwise prediction bands are shown with gradual shading
indicating bands from the 0.05 to 0.95 quantiles.

based on data from individual i only. The prior distributions are summarized in Table 7.

The hyperparameters for the priors are selected based on the prior specification for M2, as

outlined in Table 5. Specifically, the prior variance of δαi and δρi are set to be equal to the

prior mean of vδ
α
and vδ

ρ
, respectively. The prior mean of δσi,u and δσi,ϵ are aligned with the

prior means of σ2
u,t and σ

2
ϵ,t. Both the prior mean and variance of si0 are matched with the

prior mean of µs0 and vs0 .

Figure 10 depicts fan charts to summarize interval forecasts under the three scenarios for a

member of the core group, the unit with ID 74, and one of the deviators, the unit with ID 59.

We show their actual income for periods t “ 1, . . . , T “ 20 and then interval forecasts for the

next five years. A comparison of the panels in the first and second row of the figure suggests
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Figure 11: Ratio of Predictive Interval Widths, B20,1991 Sample

Y1:N,0:T Information with Parameter Uncertainty Versus

Y1:N,0:T No Para. Unc. Yi,0:T with Para. Unc.

H
“

1
H

“
5

Notes: Ratio of width of 90% predictive interval based on Y1:N,0:T information with parameter uncertainty
versus two alternatives. x-Axis: years of experience. Core group: blue dots. Deviators: orange dots.

that shutting down parameter uncertainty shortens the predictive intervals somewhat. But,

overall, the uncertainty appears to be dominated by future shocks. The forecasts in the third

row of the figure are obtained by conditioning on the smaller information set Yi,0:T , which

widens the intervals relative to the baseline forecasts in the first row. The reason is that

the cross-section provides information about the distribution of the idiosyncratic parameters

that can be used as a prior to generate sharper time series estimates for unit i.

To conduct a more systematic analysis of how parameter uncertainty and the information

set used for generating the forecasts affect interval and density forecasts, we plot 90% interval

width ratios for all individuals i in the B20,1991 sample in Figure 11 as a function of years of

experience. The denominators of the ratios are obtained from the forecasts based on Y1:N,0:T

information with parameter uncertainty (baseline). The numerators for the left panels are

the interval widths associated with the no-parameter uncertainty forecasts, whereas the

numerators for the right panels are constructed from the Yi,0:T . As suggested by Figure 10,

the ratios on the left are below one, whereas the ratios on the right are above one.
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Ratios for the core group are indicated through blue dots and values for the deviators by

red dots. For the no-parameter-uncertainty-to-baseline ratios in the left panels, we expect the

average ratio for the deviators to be smaller than for the core group. Because the parameter

estimates for the deviators do not benefit from pooling observations across units, parameter

uncertainty should play a more important role for the predictive distribution. For h “ 1 the

average for the deviators is 0.91 and for the core group is 0.92. For h “ 5 the discrepancy

is more pronounced as the average of the deviators drops to 0.88. However, none of these

differences are statistically significant.

For the Yi,0:T -to-Y1:N,0:T information ratios plotted in the right panel, we expect the core

group members to benefit more from including the information from other individuals. How

much more depends on the size of the deviations, captured by the vδ parameters. In principle,

this translates into higher ratios for core group members than for deviators. It turns out, this

effect is not reflected in the average ratios. For h “ 1 (h “ 5) the average core group ratio is

1.4 (1.3), whereas the average deviator ratio is 1.45 (1.31). As for the ratios in the left panels,

the differences are not statistically significant. One reason for the insignificance could be

that the classification of units into core members and deviators is not sharp. In general there

is posterior uncertainty about the memberships, which might explain the insignificance.

Uncertainty about future income plays an important role in life-cycle models because it

determines the magnitude of precautionary savings. Many models assume full information

rational expectations, which in the context of our analysis means that there is no uncertainty

about the parameters of the income process. The only source of uncertainty is the realization

of future shocks. Some authors, e.g., Guvenen (2007), explicitly model the Bayesian learning

about heterogeneous parameters, and account for parameter uncertainty in addition to shock

uncertainty. Our estimates highlight, that the degree of uncertainty varies considerably based

on the assumptions how the income forecasts are generated. The no-parameter uncertainty

case could be interpreted as rational expectations. Accounting for parameter uncertainty

increases the width of the 90% predictive intervals by approximately 10%. Using a sparser

information set that only includes the income trajectory of individual i herself, raises the

width of the intervals by an additional 40%.

5.5 Results From an Unbalanced Panel

Idiosyncratic Parameters. We now re-estimate modelM2 based on the unbalanced panel

U . Posterior estimates of the idiosyncratic parameters αi0, αi1{10, ρi, and δ
σ
i,ϵ are provided
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Figure 12: Posterior Idiosyncratic Parameters, Unbalanced Panel

αi0 αi1{10

ρi δσi,ϵ

Notes: Solid blue lines in α̂˚
i0, α̂

˚
i1{10, and ρ̂˚

i panels are medpl|Y1:N,1:T q ` medpδli|Y1:N,1:T q. In the bottom-
right panel they are medpδσi |Y1:N,1:T q. The dashed red lines are posterior means and the light blue bands
are 90% credible bands.

in Figure 12. In each panel, we sort the units by the posterior median estimates. As before,

heteroskedasticity, i.e., full heterogeneity of δσi is a key feature of the panel. Unlike in the

case of the balanced panels in Figure 4, there is no evidence of sparsity in the δαi estimates

in this larger panel data set. The sorted posterior median estimates of αi0 and αi1{10 do not

exhibit any flat segments. The only parameter that does have a flat segment in the posterior

median function is ρi, but the flat segment is not as pronounced as under the B20,1988 and

B20,1991 samples. Thus, as expected, expanding the cross-sectional dimension of the panel by

including more individuals, pushes the estimates toward full heterogeneity.

Posterior Distribution of θ. Parameter estimates from the baseline model and the HIP

and RIP versions are reported in Table 8. Consistent with Figure 12, the estimates of qα

and qρ are very close to one, implying full heterogeneity. The posterior median estimates of

α0 and the return to experience α1{10 are with -0.21 and and .017, respectively, very close

to the estimates for the balanced samples B20,1988 and B20,1991 reported in Table 6. Due to
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Table 8: Posterior Distribution for θ, Unbalanced Panel

M2 M2(HIP) M2(RIP)
Para Median HPD Median HPD Median HPD
α0 -0.21 [-0.23, -0.20] -0.21 [-0.23, -0.20] -0.37 [-0.39, -0.35]
α1{10 .017 [.016, .018] .017 [.016, .018] .020 [.019, .021]
ρ 0.63 [0.60, 0.65] 0.63 [0.61, 0.65] 0.97 [0.97, 0.98]
µs0 -0.23 [-0.26, -0.20] -0.23 [-0.23, -0.20] -0.02 [-0.04, -0.00]
vs0 0.26 [0.23, 0.29] 0.27 [0.24, 0.30] 0.14 [0.13, 0.15]
qα 0.99 [0.97, 1.00] - - - -
qρ 0.89 [0.77, 1.00] - - - -
qσu 1.00 [0.99, 1.00] 1.00 [0.99, 1.00] 1.00 [0.99, 1.00]
qσϵ 1.00 [0.99, 1.00] 1.00 [0.99, 1.00] 1.00 [0.99, 1.00]
vδα0 0.09 [0.08, 0.10] 0.08 [0.07, 0.10] - -
vδα1 {100 .002 [.002, .002] .002 [.002, .002] - -
vδρ 0.05 [0.04, 0.05] 0.04 [0.04, 0.05] - -
vδσu 42.56 [17.75, 78.24] 43.03 [18.72, 79.81] 42.37 [19.04, 82.14]
vδσϵ 35.85 [15.23, 67.73] 35.56 [16.31, 68.49] 30.07 [12.90, 53.81]
LPS Diff. - -.000 -.007
RMSE Diff. (%) - 0.18 -1.44

Notes: For the parameters we report 90% posterior HPD intervals. α1 and vδα1 are re-scaled to undo the
division of experience by 10 in the definition of xit, see (24). LPS and RMSE differentials for the out-of-
sample predictions are computed with respect to the baseline model M2.

the larger sample size, the credible intervals for those parameters are much smaller for the

unbalanced sample.

An important difference between the estimates from the U and BT,τ samples manifests

itself in regard to the autocorrelation of the persistent income component ρ and the return-

to-experience heterogeneity captured by vδα1 . For the unbalanced sample ρ̂ “ 0.63, which is

considerably lower than the estimates obtained for the balanced samples and the numbers

generally reported in the literature. In regard to vδα1 , recall that the estimates for the two

balanced panels reported in Table 6 were .0002 and .0001. In the unbalanced panel the

estimate is an order of magnitude larger: v̂δα1 “ .002. Qualitatively, the low estimate of ρ is

consistent with the larger return-to-experience heterogeneity, as these two parameters have

found to be negatively related in the existing literature.

The low estimate of ρ and the high estimate of v̂δα1 implies that return to experience

heterogeneity and transitory shocks play a more important role for income inequality within

cohorts. For the B20,1988 sample in Figure 6 we found that with five years of experince, α

heterogeneity generates about 8% of the income inequality and the transitory income shock
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about 4%. With eight years of experience the contribution is essentially zero. Using the

estimates from the unbalanced panel instead, α heterogeneity and transitory shock explain

40% and 10% of the income inequality within the cohort after five years of work experience

and 25% and 5% after ten years.

Comparing the vδσ estimates from the unbalanced panel to those from the balanced

panels in Table 6 one also notices a substantial increase in the shock variances. For instance,

for B20,1988 the posterior median estimate of vδσϵ is 4.58, whereas it equals 35.85 for the

unbalanced panel. To interpret the magnitude of δσi,ϵ (and its variance), recall that it has to

be multiplied by σ2
ϵ,t which we plotted in Figure 7 for the balanced panels. The values for

the unbalanced panel are slightly smaller. Overall, the cross-sectional averages of σ2
ϵ,tδ

σ
i,ϵ are

quite similar across samples.

The remaining columns of Table 8 contain estimates for M2(HIP) and M2(RIP). The

HIP estimates, generated conditional on qα “ qρ “ 1, are essentially equal to the baseline

estimates, which feature q̂α “ 0.99 and q̂ρ “ 0.89. The RIP estimates feature a substantially

larger ρ̂ “ 0.97. Moreover, the estimated return to experience is about three percentage

points larger than for M2 and M2(HIP). In the bottom rows of Table 8 we report results

for the one-step-ahead out-of-sample predictive performance. As previously in Figure 9, we

compute LPS differentials and relative RMSE differentials (in percent) with respect to the

baseline model M2. Negative values indicate an improvement. The differentials between M2

and M2(HIP) are essentially zero. The RIP specification with the more persistent income

process leads to a small improvement in terms of point (RMSE) and density (LPS) forecasts.

The RMSE gain is about 1.5%. Multiplying the LPS differential by the cross-sectional sample

size of approximately 800 observations at the forecast origin, we obtain log odds of about

5.6 in favor of the RIP specification. Here the parsimony of the RIP specification seems to

improve the out-of-sample forecast performance if we average across all the units.

5.6 Summary

Using balanced panels of individuals with a long employment history, we found that het-

erogeneity with respect to returns to experience and the autocorrelation of the persistent

stochastic income component is sparse, with large core groups of individuals sharing iden-

tical coefficients and a small number of deviators. For a large unbalanced panel, we found

evidence for full coefficient heterogeneity, with the caveat that the specification with homo-

geneous coefficients performs better in terms of one-step-ahead out-of-sample forecasting.
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We also examined forecasts for specific individuals conditional on information from the full

panel Y1:N,0:T accounting for shock and parameter uncertainty, the full panel ignoring pa-

rameter uncertainty, and the individual history Yi,0:T accounting for shock and parameter

uncertainty. This comparison has an important message for the macroeconomic life-cycle

model literature: subtle assumptions about the agents information set can have large effects

on the income uncertainty that agents face and hence on their precautionary savings motive.

6 Conclusion

We incorporated a version of a spike and slab prior, comprising a pointmass at zero (“spike”)

and a Normal distribution around zero (“slab”) into a dynamic panel data framework to

model coefficient heterogeneity. Our framework nests coefficient homogeneity and full het-

erogeneity as a special case, but can also capture sparse heterogeneity, meaning that there

is a core group of units that share the same coefficients. The remaining units deviate from

the core group. There is a straightforward extension of our framework to correlated random

effects and one could also treat the slab part of the δi distribution nonparametrically as in

Liu (2023). However, in many empirical applications simple parametric specifications tend

to work well and we hope that the proposed framework will prove to be useful beyond the

application presented in this paper.
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Atchadé, Y. F., and J. S. Rosenthal (2005): “On Adaptive Markov Chain Monte

Carlo Algorithms,” Bernoulli, 11(5), 815–828.

Baker, M. (1997): “Growth-Rate Heterogeneity and the Covariance Structure of Life-Cycle

Earnings,” Journal of Labor Economics, 15(2), 338–375.

Bonhomme, S., and E. Manresa (2015): “Grouped Patterns of Heterogeneity in Panel

Data,” Econometrica, 83(3), 1147–1184.

Browning, M., and M. Ejrnjes (2013): “Heterogeneity in the Dynamics of Labor Earn-

ing,” Annual Review of Economics, 5, 219–245.



This Version: October 20, 2023 40

Browning, M., M. Ejrnjes, and J. Alvarez (2010): “Modelling Income Processes with

Lots of Heterogeneity,” Review of Economic Studies, 77(4), 1353–1381.

Castillo, I., and A. van der Vaart (2012): “Needles and Straw in a Haystack: Posterior

Concentration for Possibly Sparse Sequences,” Annals of Statistics, 40(4), 2069–2101.

Chamberlain, G., and K. Hirano (1999): “Predictive Distributions Based on Longitu-

dinal Earnings Data,” Annales d’Economie et de Statistique, pp. 211–242.

George, E. I., and R. E. McCulloch (1993): “Variable Selection Via Gibbs Sampling,”

Journal of the American Statistical Association, 88(423), 881–889.

(1997): “Approaches for Bayesian Variable Selection,” Statistica Sinica, 7(2), 339–

373.

Geweke, J. (1996): “Variable Selection and Model Comparison in Regression,” in Bayesian

Statistics, ed. by J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, vol. 5,

pp. 169–194. Oxford University Press.

Giannone, D., M. Lenza, and G. Primiceri (2021): “Economic Predictions with Big

Data: The Illusion of Sparsity,” Econometrica, 89(5), 2409–2437.

Griffin, J. E. (2016): “An Adaptive Truncation Method for Inference in Bayesian Non-

parametric Models,” Statistics and Computing, 26(1), 423–441.

Gu, J., and R. Koenker (2017a): “Empirical Bayesball Remixed: Empirical Bayes Meth-

ods for Longitudinal Data,” Journal of Applied Economics (Forthcoming), 35(1), 781–799.

(2017b): “Unobserved Heterogeneity in Income Dynamics: An Empirical Bayes

Perspective,” Journal of Business & Economic Statistics, 35(1), 1–16.

Guvenen, F. (2007): “Learning Your Earning: Are Labor Income Shocks Really Very

Persistent?,” American Economic Review, 97(3), 687–712.

(2009): “An Empirical Investigation of Labor Income Processes,” Review of Eco-

nomic Dynamics, 12(1), 58–79.

Haider, S. J. (2001): “Earnings Instability and Earnings Inequality of Males in the United

States: 1967 - 1991,” Journal of Labor Economics, 19(4), 799–836.



This Version: October 20, 2023 41

Hause, J. C. (1980): “The Fine Structure of Earnings and On-the-Job Training Hypothe-

sis,” Econometrica, 48(4), 1013–1029.

Hoffmann, F. (2019): “HIP, RIP, and the Robustness of Empirical Earnings Processes,”

Quantitative Economics, 10, 1279–1315.

Hospido, L. (2012): “Modelling Heterogeneity and Dynamics in the Volatility of Individual

Wages,” Journal of Applied Econometrics, 27, 386–414.

Hryshko, D. (2012): “Labor Income Profiles are Not Heterogeneous: Evidence from Income

Growth Rates,” Quantitative Economics, 3, 177–209.

Johnstone, I. M., and B. W. Silverman (2004): “Needles and Straw in Haystacks:

Empirical Bayes Estimates of Possibly Sparse Sequences,” Annals of Statistics, 32(4),

1594–1649.

Lillard, L. A., and Y. Weiss (1979): “Components of Variation in Panel Earnings Data:

American Scientists 1960-70,” Econometrica, 47(2), 437–454.

Liu, L. (2023): “Density Forecasts in Panel Data Models: A Semiparametric Bayesian

Perspective,” Journal of Business & Economic Statistics, forthcoming.

Liu, L., H. R. Moon, and F. Schorfheide (2020): “Forecasting With Dynamic Panel

Data Models,” Econometrica, 88(1), 171–201.

(2023): “Forecasting With a Panel Tobit Model,” Quantitative Economics, 14(1),

117–159.

MaCurdy, T. E. (1982): “The Use of Time Series Processes to Model the Error Structure

of Earnings in a Longitudinal Data Analysis,” Journal of Econometrics, 18, 83–114.

Meghir, C., and L. Pistaferri (2004): “Income Variance Dynamics and Heterogeneity,”

Econometrica, 72(1), 1–32.

Mitchell, T. J., and J. J. Beauchamp (1988): “Bayesian Variable Selection in Linear

Regression,” Journal of the American Statistical Association, 83(404), 1023–1032.

Nakata, T., and C. Tonetti (2015): “Small Sample Properties of Bayesian Estimators

of Labor Income Processes,” Journal of Applied Economics, 18(1), 121–148.



This Version: October 20, 2023 42

Rosenthal, J. S., et al. (2011): “Optimal Proposal Distributions and Adaptive MCMC,”

Handbook of Markov Chain Monte Carlo, 4(10.1201), 119–138.

Zhang, B. (2023): “Incorporating Prior Knowledge of Latent Group Structure in Panel

Data,” arXive Working Paper, 2211.16714.



Online Appendix – This Version: October 20, 2023 A.1

Online Appendix: Bayesian Estimation of Sparsely Heterogeneous

Panel Models

Hyungsik Roger Moon, Frank Schorfheide, and Boyuan Zhang

The Online Appendix consists of the following parts:

A. Posterior Sampling for Variants of M1

B. Posterior Sampling for Variants of M2

C. Additional Empirical Results

A Posterior Sampling for Variants of M1

A.1 Homoskedastic Model

We first consider a homoskedastic model with the restriction δσi “ 1. Let xit “ r1 yit´1s
1, the

model (7) can be rewritten as

yit “ x1
itpβ ` δiq ` σuit (A.1)

or in its matrix form

Yi “ Xipβ ` δiq ` σui (A.2)

Assume the hyperprior for q is Betapa, bq, and σ2 follows IG
`νσ

2
,
τσ
2

˘

. Rewrite the model

using a set of latent variable Z1:N “ rz1, z2, ..., zN s1 and zi “ rzαi , z
ρ
i s1. zαi equals 1 if δαi ‰ 0

and zero whenever δαi “ 0. Similarly, zρi “ 1 if δρi ‰ 0 and equals zero when δρi “ 0. We

define Yi to be a T ˆ 1 vector: Yi “ ryi1, yi2, ..., yiT s1, and Xi to be a T ˆ 2 matrix with rows

x1
it. Denote β “ rα ρs1, δi “ rδαi δ

ρ
i s1, and vδ “ rvδα vδρs

1. We present the sampler for the case

in which δα and δρ are independent. This is the algorithm used to generate the Monte Carlo

results in Section 4 of the paper. We also present samplers for the homogeneous (q “ 0) and

the fully heterogeneous (q “ 1) specifications, which are special cases of the q “ 0 samplers.
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A.1.1 Spike-and-Slab Prior: δα and δρ are Independent

The posterior of the unknown objects of this model is:

ppβ, δ, σ2, Z1:N , q, vδ|Y1:Nq

9 ppY1:N |β, δ, σ2
qppδ|Z1:N , vδqppβqppZ1:N |qqppqqppσ2

qppvδq

9

N
ź

i“1

ˆ

1

2πσ2

˙
T
2

exp

"

´
1

2σ2 rYi ´ Xipβ ` δiqs
1
rYi ´ Xipβ ` δiqs

*

ˆ

N
ź

i“1

«

ˆ

1

2πvδα

˙
1
2

exp

˜

´
δα

2

i

2vδα

¸ffzαi

Itδαi “ 0u
1´zαi

«

ˆ

1

2πvδρ

˙
1
2

exp

˜

´
δρ

2

i

2vδρ

¸ffzρi

Itδρi “ 0u
1´zρi

ˆ
1

2π

ˇ

ˇvβ
ˇ

ˇ

´ 1
2 exp

ˆ

´
1

2
β1v´1

β β

˙

ˆ

N
ź

i“1

pqαq
zαi p1 ´ qαq

1´zαi pqρqz
ρ
i p1 ´ qρq1´zρi

ˆpqαq
a´1

p1 ´ qαq
b´1

¨ pqρqa´1
p1 ´ qρqb´1

ˆ

ˆ

1

σ2

˙

νσ
2

`1

exp
´

´
τσ
2σ2

¯

ˆ

ˆ

1

vδα

˙

νδα
2

`1

exp

ˆ

´
τ δα

2vδα

˙ˆ

1

vδρ

˙

νδρ
2

`1

exp

ˆ

´
τ δρ

2vδρ

˙

,

where vβ “ diagpvα, vρq and Itx “ au is the indicator function that is equal to one if x “ a

and equal to zero otherwise. We can sample from the joint posterior of pβ, δ, q, Z1:N , σ
2, vδq

using a Gibbs sampling algorithm with five blocks.

Conditional Posterior of β: Let rYi “ Yi ´ Xiδi. Then

ppβ|Y1:N , δ, σ
2
q 9 exp

«

´
1

2σ2

N
ÿ

i“1

´

rYi ´ Xiβ
¯1 ´

rYi ´ Xiβ
¯

ff

exp

ˆ

´
1

2
β1v´1

β β

˙

9 exp

"

´
1

2
pβ ´ β̄q

1v̄´1
β pβ ´ β̄q

*

,

where

v̄β “

˜

v´1
β ` σ´2

N
ÿ

i“1

X 1
iXi

¸´1

, β̄ “ v̄βσ
´2

N
ÿ

i“1

X 1
i
rYi.

This implies

β|pY1:N , δ, σ
2
q „ N

`

β̄, v̄β
˘

. (A.3)
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Conditional Posterior of pqα, qρq is given by

ppql|Z1:Nq 9 pqlqa`ψpzlq´1
p1 ´ qlqb`N´ψpzlq´1,

where ψpzlq “
řN
i“1 z

l
i is the total number of non-zero elements in δl. This implies

ql|Z1:N „ Betapa ` ψpzlq, b ` N ´ ψpzlqq, l P tα, ρu. (A.4)

Conditional Posterior of pvδα , vδρq is given by

ppvδl |Z1:N , δq 9

N
ź

i“1

«

ˆ

1

vδl

˙
1
2

exp

˜

´
δl

2

i

2vδl

¸ffzli ˆ
1

vδl

˙

ν
δl
2

`1

exp

ˆ

´
τ δl

2vδl

˙

9

ˆ

1

vδl

˙

ν
δl

`ψpzlq

2
`1

exp

˜

´
τ δl `

ř

i|zli“1 δ
l2

i

2vδl

¸

.

This implies

vδl |pZ1:N , δq „ IG
´ ν̄δl

2
,
τ̄δl

2

¯

, l P tα, ρu, (A.5)

where

ν̄δl “ νδl ` ψpzlq

τ̄δl “ τ δl `
ÿ

i|zli“1

δl
2

i .

Conditional Posterior of pZ, δq: Notice that we assume cross-sectional independence.

To derive the posterior pZi, δiq conditional on pYi, β, q, σ
2, vδq, we use Gibbs sampler to

draw pzαi , δ
α
i q conditional on pYi, β, q

α, σ2, zρi , δ
ρ
i , vδαq and then draw pzρi , δ

ρ
i q conditional on

pYi, β, q
ρ, σ2, zαi , δ

α
i , vδρq.

We start with zαi , δ
α
i |Yi, β, q

α, σ2, zρi , δ
ρ
i , vδα . The posterior odds of zαi “ 1 versus zαi “ 0

are given by

Kα
i “

Ppzαi “ 1|Yi, β, q
α, σ2, δρi , vδαq

Ppzαi “ 0|Yi, β, qα, σ2, δρi , vδαq
“

qα

1 ´ qα
ppYi|β, σ

2, δρi , vδα , z
α
i “ 1q

ppYi|β, σ2, δρi , vδα , z
α
i “ 0q

. (A.6)

Under zαi “ 1, δαi is set to follow a normal distribution. The marginalized likelihood of
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Yi|pβ, σ
2, δρi , vδα , z

α
i “ 1q can be obtained by rearranging Bayes Theorem:

ppYi|β, σ
2, δρi , vδα , z

α
i “ 1q “

ppYi|β, σ
2, δαi , δ

ρ
i , vδα , z

α
i “ 1qppδαi |vδα , z

α
i “ 1q

ppδαi |Yi, β, σ2, δρi , vδα , z
α
i “ 1q

. (A.7)

It is given by

ppYi|β, σ
2, δρi , vδα , z

α
i “ 1q “

p2πσ2q´T
2 exp

´

´ 1
2σ2

řT
t“1 qy

α2

it

¯

p2πvδαq´ 1
2 exp

´

´ 02

2vδα

¯

`

2πv̄δαi
˘´ 1

2 exp

ˆ

´
δ̄α

2
i

2v̄δα
i

˙

“ p2πσ2
q

´T
2

ˆ

vδα

v̄δαi

˙´ 1
2

exp

˜

´
1

2σ2

T
ÿ

t“1

qyα
2

it `
δ̄α

2

i

2v̄δαi

¸

,

where qyαit “ yit ´ α ´ pρ ` δρi qyit´1, δ̄
α
i and v̄δαi are posterior mean and variance of δαi :

v̄δαi “
`

v´1
δα ` Tσ´2

˘´1
, δ̄αi “ v̄δαi σ

´2
T
ÿ

t“1

qyαit.

For zαi “ 0 we have δαi “ 0 and

ppYi|β, σ
2, δρi , vδα , z

α
i “ 0q “ p2πσ2

q
´T

2 exp

˜

´
1

2σ2

T
ÿ

t“1

qyα
2

it

¸

.

We conclude that the posterior odds of zαi “ 1 vs. zαi “ 0 are

Kα
i “

qα

1 ´ qα

ˆ

vδα

v̄δαi

˙´ 1
2

exp

˜

δ̄α
2

i

2v̄δαi

¸

. (A.8)

We can draw zαi as follows:

zαi |pYi, β, q
α, σ2, δρi , vδαq “

$

&

%

1 with prob.
Kα
i

Kα
i `1

0 with prob. 1
Kα
i `1

. (A.9)
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If zαi “ 1, the conditional posterior of δαi is given by

ppδαi |Yi, z
α
i , β, σ

2, δρi , vδαq 9 exp

«

´
1

2σ2

T
ÿ

t“1

pqyαit ´ δαi q
2

ff

exp

˜

´
δα

2

i

2vδα

¸

9 exp

»

–´
1

2
`

v´1
δα ` Tσ´2

˘´1

˜

δαi ´
σ´2

řT
t“1 qy

α
it

v´1
δα ` Tσ´2

¸2
fi

fl .

If zαi “ 0 then δαi “ 0. Overall, we obtain

δαi |pYi, z
α
i , β, σ

2, δρi , vδαq „

#

N
`

δ̄αi , v̄δαi
˘

if zαi “ 1

0 if zαi “ 0
. (A.10)

Sampling from the conditional distribution zρi , δ
ρ
i |pβ, qρ, σ2, zαi , δ

α
i , vδρq proceeds in the

same manner. We define qyρit “ yit ´α´ δαi ´ ρyit´1 and let δ̄ρi and v̄δρi be the posterior mean

and variance of δρi :

v̄δρi “

˜

v´1
δρ ` σ´2

T
ÿ

t“1

y2it´1

¸´1

, δ̄ρi “ v̄δρi σ
´2

T
ÿ

t“1

yit´1qy
ρ
it.

The posterior odds of zρi “ 1 vs. zρi “ 0 are

Kρ
i “

qρ

1 ´ qρ

˜

vδρ

v̄δρi

¸´ 1
2

exp

˜

δ̄ρ
2

i

2v̄δρi

¸

. (A.11)

We can draw zαi as follows:

zρi |pYi, β, q
ρ, σ2, δαi , vδρq “

$

&

%

1 with prob.
Kρ
i

Kρ
i `1

0 with prob. 1
Kρ
i `1

. (A.12)

Moreover,

δρi |pYi, z
ρ
i , β, σ

2, δαi , vδρq „

$

&

%

N
´

δ̄ρi , v̄δρi

¯

if zi “ 1

0 if zi “ 0
. (A.13)
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Conditional Posterior of σ2 is given by

ppσ2
|Y1:N , β, δq

9

ˆ

1

σ2

˙

νσ
2

`1

exp
´

´
τσ
2σ2

¯

N
ź

i“1

ˆ

1

σ2

˙
T
2

exp

"

´
1

2σ2 rYi ´ Xipβ ` δiqs
1
rYi ´ Xipβ ` δiqs

*

“

ˆ

1

σ2

˙

νσ`NT

2
`1

exp

#

´
1

2σ2

#

τσ `

N
ÿ

i“1

rYi ´ Xipβ ` δiqs
1
rYi ´ Xipβ ` δiqs

++

This implies

σ2
|pY1:N , β, δq „ IG

´ ν̄σ
2
,
τ̄σ
2

¯

, (A.14)

where

ν̄σ “ νσ ` NT

τ̄σ “ τσ `

N
ÿ

i“1

rYi ´ Xipβ ` δiqs
1
rYi ´ Xipβ ` δiqs .

A.1.2 A Homogeneous Version

The model is obtained from (7) by setting δαi “ δρi “ 0 while maintaining α and ρ as unknown

parameters.

yit “ α ` ρyit´1 ` σuit “ x1
itβ ` σuit, (A.15)

where β “ rα ρs1, and xit “ r1 yit´1s1. The posterior computations reduce to a Gibbs sampler

with two blocks.

Conditional Posterior of β “ rα ρs1: Same as (A.3) with δi “ 0.

Conditional posterior of σ2: Same as (A.14) with δi “ 0.

A.1.3 A Fully Heterogeneous Version

The model is obtained from (7) by setting q “ 1 which in turn implies that zi “ 1 for all i.

The posterior computations reduce to a Gibbs sampler with four blocks.

Conditional Posterior of β “ rα ρs1: Same as (A.3).

Conditional Posterior of vδ “ rvδα vδρs
1: Same as (A.5).
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Conditional Posterior of δ “ rδα δρs
1:

δi|pYi, β, σ
2, vδq „ N

`

δ̄i, v̄δi
˘

(A.16)

where we define qYi “ Yi ´ Xiβ, and v̄δi and δ̄i are posterior mean and variance of δi:

v̄δi “
`

v´1
δ ` σ´2X 1

iXi

˘´1
, δ̄i “ v̄δiσ

´2X 1
i
qYi.

Conditional Posterior of σ2: Same as (A.14).

A.2 Heteroskedastic Model

We now consider (7) without the restriction δσi “ 1.

A.2.1 Spike-and-Slab Prior: qα, qρ and qσ are Independent

The posterior of the unknown objects of this model is:

ppβ, δ, q, Z1:N , σ
2, vδ|Y1:Nq

9 ppY1:N |β, δ, σ2
qppδα|zα, vδαqppδρ|zρ, vδρqppδσ|zσ, vδσqppβqppZ1:N |qqppqqppσ2

qppvδαqppvδρqppvδσq

9

N
ź

i“1

ˆ

1

2πσ2δσi

˙
T
2

exp

"

´
1

2σ2δσi
rYi ´ Xipβ ` δiqs

1
rYi ´ Xipβ ` δiqs

*

ˆ

N
ź

i“1

«

ˆ

1

2πvδα

˙
1
2

exp

˜

´
δα

2

i

2vδα

¸ffzαi

Itδαi “ 0u
1´zαi

«

ˆ

1

2πvδρ

˙
1
2

exp

˜

´
δρ

2

i

2vδρ

¸ffzρi

Itδρi “ 0u
1´zρi

«

pv´1
δσ ` 1qpv´1

δσ `2q

Γpv´1
δσ ` 2q

ˆ

1

δσi

˙v´1
δσ `3

exp

ˆ

´
v´1
δσ ` 1

δσi

˙

ffzσi

Itδσi “ 0u
1´zσi

ˆ
1

2π

ˇ

ˇvβ
ˇ

ˇ

´ 1
2 exp

ˆ

´
1

2
β1v´1

β β

˙

ˆ

N
ź

i“1

pqαq
zαi p1 ´ qαq

1´zαi pqρqz
ρ
i p1 ´ qρq1´zρi pqσq

zσi p1 ´ qσq
1´zσi

ˆpqαq
a´1

p1 ´ qαq
b´1

¨ pqρqa´1
p1 ´ qρqb´1

¨ pqσq
a´1

p1 ´ qσq
b´1

ˆ

ˆ

1

σ2

˙

νσ
2

`1

exp
´

´
τσ
2σ2

¯

ˆ

ˆ

1

vδα

˙

νδα
2

`1

exp

ˆ

´
τ δα

2vδα

˙ˆ

1

vδρ

˙

νδρ
2

`1

exp

ˆ

´
τ δρ

2vδρ

˙ˆ

1

vδσ

˙

νδσ
2

`1

exp

ˆ

´
τ δσ

2vδσ

˙

,
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where vβ “ diagpvα, vρq and δi “ rδαi δρi s1. Note that, as we impose that Erδσi s “ 1, the

“slab” part of the prior of δσi can be reparameterized in terms of vδσ which lead to,

νδσ “ 2v´1
δσ ` 4, τδσ “ 2v´1

δσ ` 2,

and

δσi |qσ, νδσ , τδσ „ IG
`

v´1
δσ ` 2, v´1

δσ ` 1
˘

with prob. qσ.

We can sample from the joint posterior of pβ, q, δ, Z1:N , vδα , vδρ , vδσ , σ
2q using a Gibbs

sampling algorithm with six blocks.

Conditional posterior of β. Let σi “ σ
a

δσi . The posterior is the same as in (A.3), except

for a slight change in the posterior mean and variance formulas reflecting the heteroskedas-

ticity:

v̄β “

˜

v´1
β `

N
ÿ

i“1

σ´2
i X 1

iXi

¸´1

, β̄ “ v̄β

N
ÿ

i“1

σ´2
i X 1

i
rYi.

Conditional Posterior of pqα, qρ, qσq: Same as (A.4), for l P tα, ρ, σu.

Conditional Posterior of pvδα , vδρq: Same as (A.5).

Conditional Posterior of vδσ : To economize on notation, we represent vδσ by ω. The

conditional posterior of ω is given by

ppω|zσ, δσq 9
ź

i|zσi “1

«

pω´1 ` 1qpω´1`2q

Γpω´1 ` 2q

ˆ

1

δσi

˙ω´1`3

exp

ˆ

´
ω´1

` 1

δσi

˙

ff

ˆ

1

ω

˙

νδσ
2

`1

exp
´

´
τ δσ

2ω

¯

9
pω´1 ` 1q

ψpzσqpω´1`2q

Γpω´1 ` 2qψpzσq

¨

˝

ź

i|zσi “1

δσi

˛

‚

´ω´1

exp

¨

˝´ω´1
ÿ

i|zσi “1

1

δσi
´
τ δσ

2ω

˛

‚ω´p
νδσ
2

`1q,

where ψpzσq “
řN
i“1 z

σ
i is the total number of non-zero elements in δσ. The log posterior of

ω is given by

ln ppω|zσ, δσq 9 ψpzσq
`

ω´1
` 2

˘

ln
`

ω´1
` 1

˘

´ ψpzσq ln Γpω´1
` 2q

´

´νδσ

2
` 1

¯

lnω ´ ω´1

»

–

ÿ

i|zσi “1

ˆ

ln δσi `
1

δσi

˙

`
τ δσ

2

fi

fl .

We sample from this non-standard posterior via random walk Metropolis-Hastings (RWMH)

algorithm. Notice that the posterior is well-defined when ω ą 0. As a result, we use a trun-
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cated Normal distribution for the proposal distribution. Let us denote by N` pµ, µ´, σ2q the

truncated normal distribution with left truncation point µ´. Then the proposal distribution

qpϑ|ωj´1q follows N` pωj´1, 0, c2q, whose density is given by

f
`

ϑ | ωj´1, 0, c2
˘

“

ϕ
´

ϑ´ωj´1

c

¯

Φ
`

ωj´1

c

˘ 1ϑą0,

where ϕ and Φ are PDF and CDF of the standard Normal distribution. This proposal

distribution ensures the posterior draw of ω is strictly bounded below by 0. This following

adaptive RWMH Algorithm is based on Atchadé and Rosenthal (2005) and Griffin (2016),

who adaptively adjust the random walk step-size to keep the acceptance rate around certain

desirable percentage.

Algorithm A.1 (Adaptive RWMHAlgorithm for ω)

Set ω0 to its prior mean 1 and initial random walk step-size c0 “ 1. For j “ 1, ..., NMCMC,

conditional on the posterior draws of other parameters,

1. Draw ϑ from the proposal distribution N` pωj´1, 0, cjq.

2. Set ωj “ ϑ with probability

α
`

ϑ|ωj´1
˘

“ min
␣

1, exp
“`

ln ppϑ|zσ, δσq ´ ln ppωj´1
|zσ, δσq

˘

´
`

lnΦ
`

ϑ{cj
˘

´ lnΦ
`

ωj´1
{cj

˘˘‰(

and ωj “ ωj´1 otherwise.

3. Update the random walk step-size for the next iteration,

log cj`1
“ g

␣

log cj ` j´p
“

α
`

ϑ|ωj´1
˘

´ α˚
‰(

where 0.5 ă p ď 1, α˚ is the target acceptance rate, and

gpxq “ minp|x|, x̄q ¨ sgnpxq

where x̄ “ 10 is user-specific large number. Following Griffin (2016), we set p “ 0.55.

Given the opacity of the posterior, it is difficult to derive a theoretically optimal ac-

ceptance rate in the RWMH algorithm. Instead, we set α˚ to 0.44, which is the optimal

acceptance rates for the univariate sampling suggested by Rosenthal et al. (2011).
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With a posterior draw of ω, we can find the values for the hyperparameters of δσi by (9),

which will be used in the next block.

Conditional Posterior of pz, δq. Posteriors for pzαi , δ
α
i q and pzρi , δ

ρ
i q are the same as in

(A.9, A.10) and (A.12, A.13), except for a slight change in the formulas to capture the

heteroskedasticity:

v̄δαi “
`

v´1
δα ` Tσ´2

i

˘´1
, δ̄αi “ v̄δαi σ

´2
i

T
ÿ

t“1

qyαit

qyαit “ yit ´ α ´ pρ ` δρi qyit´1, σi “ σ
a

δσi .

and

v̄δρi “

˜

v´1
δρ ` σ´2

i

T
ÿ

t“1

y2it´1

¸´1

, δ̄ρi “ v̄δρi σ
´2
i

T
ÿ

t“1

yit´1qy
ρ
it

qyρit “ yit ´ α ´ δαi ´ ρyit´1, σi “ σ
a

δσi .

We now turn to draws from zσi , δ
σ
i |pβ, qσ, σ2, δαi , δ

ρ
i , νδσ , τδσq. Define

qyσit “ yit ´ pα ` δαi q ´ pρ ` δρi qyit´1.

If zσi “ 1, then δσi has an inverse gamma distribution. The marginalized likelihood of

pYi|β, σ
2, δαi , δ

ρ
i , vδσ , z

σ
i q is:

ppYi|β, σ
2, δαi , δ

ρ
i , vδσ , z

σ
i “ 1q

“

ż 8

´8

ppYi|β, σ
2, δαi , δ

ρ
i , δ

σ
i , z

σ
i “ 1qppδσi |vδσ , z

σ
i “ 1qdδσi

“

ż 8

´8

`

2πσ2δσi
˘´T

2 exp

˜

´

řT
t“1 qy

σ2

it

2σ2δσi

¸

pv´1
δσ ` 1qpv´1

δσ `2q

Γpv´1
δσ ` 2q

ˆ

1

δσi

˙v´1
δσ `3

exp

ˆ

´
v´1
δσ ` 1

δσi

˙

dδσi

“
`

2πσ2
˘´T

2
Γ
`

ν̄δσ
2

˘

Γ
`

v´1
δσ ` 2

˘

`

v´1
δσ ` 1

˘v´1
δσ `2

´

τ̄δσ
i

2

¯

ν̄δσ
2

.

where ν̄δσ “ 2v´1
δσ ` 4 ` T and τ̄δσi “ 2v´1

δσ ` 2 ` σ´2
řT
t“1 qy

σ2

it .
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For zσi “ 0, we have δσi “ 1 and

ppYi|β, σ
2, δαi , δ

ρ
i , z

σ
i “ 0q “ ppYi|β, σ

2, zσi “ 0q “ p2πσ2
q

´T
2 exp

˜

´
1

2σ2

T
ÿ

t“1

qyσ
2

it

¸

. (A.17)

Thus the posterior odds of zσi “ 1 vs. zσi “ 0 are

Kσ
i “

qσ

1 ´ qσ
Γ
`

ν̄δσ
2

˘

Γ
`

v´1
δσ ` 2

˘

`

v´1
δσ ` 1

˘v´1
δσ `2

´

τ̄δσ
i

2

¯

ν̄δσ
2

exp

˜

1

2σ2

T
ÿ

t“1

qyσ
2

it

¸

. (A.18)

Based on the posterior odds Kσ
i we can draw zσi as follows:

zσi |pYi, β, q
σ, σ2, δαi , δ

ρ
i , vδσq “

$

&

%

1 with prob.
Kσ
i

Kσ
i `1

0 with prob. 1
Kσ
i `1

. (A.19)

If zσi “ 1, the conditional posterior of δσi is given by

ppδσi |Yi, z
σ
i , β, σ

2, δαi , δ
ρ
i , vδσq 9

ˆ

1

δσi

˙
T
2

exp

˜

´

řT
t“1 qy

σ2

it

2σ2δσi

¸

ˆ

1

δσi

˙v´1
δσ

`3

exp

˜

´
v´1
δσ

` 1

δσi

¸

9

ˆ

1

δσi

˙
T
2

`v´1
δσ

`3

exp

˜

´
σ´2

řT
t“1 qy

σ2

it ` 2v´1
δσ

` 2

2δσi

¸

.

If zσi “ 0 then δσi “ 1. Overall, we obtain

δσi |pYi, z
σ
i , β, σ

2, δαi , δ
ρ
i , vδσq „

$

&

%

IG
´

ν̄δσ
2
,
τ̄δσ
i

2

¯

if zσi “ 1

1 if zσi “ 0
(A.20)

Conditional posterior of σ2: Same as (A.14), with the exception that τ̄σ is defined as

τ̄σ “ τσ `

N
ÿ

i“1

rYi ´ Xipβ ` δiqs
1
rYi ´ Xipβ ` δiqs {δσi .
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A.2.2 A Homogeneous Version

The model is obtained from (7) by setting δαi “ δρi “ 0 and δσi “ 1 while maintaining α, ρ

and σ2 as unknown parameters.

yit “ α ` ρyit´1 ` σuit “ x1
itβ ` σuit, (A.21)

where β “ rα ρs1, and xit “ r1 yit´1s1. The posterior computations reduce to a Gibbs sampler

with two blocks.

Conditional Posterior of β “ rα ρs1: Same as (A.3) with δi “ 0.

Conditional posterior of σ2: Same as (A.14) with δi “ 0.

A.2.3 A Fully Heterogeneous Version

The model is obtained from (7) by setting q “ 1 which in turn implies that zi “ 1 for all i.

The posterior computations reduce to a Gibbs sampler with five blocks.

Conditional Posterior of β “ rα ρs1: Same as (A.3).

Conditional Posterior of vδ “ rvδα vδρs
1: Same as (A.5).

Conditional Posterior of vδσ : Same as Algorithm A.1.

Conditional Posterior of δ “ rδα δρ δσs1: Same as (A.16) and (A.20) with zσi “ 1.

Conditional Posterior of σ2: Same as (A.14).
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B Posterior Sampling for Variants of Model M2

A more elaborate specification for the income process takes the following form

yit “ H 1
itpα ` δαi q ` sit ` σu,t

b

δσi,uuit (A.22)

sit “ pρ ` δρi qsit´1 ` σϵ,t

b

δσi,ϵϵi,t.

where α “ rα0 α1s
1, δαi “ rδαi0 δ

α
i1s

1, and Hit “ r1 hits
1.

Priors for Heterogeneous Parameters. For pδα, δρq we use a (multivariate) Normal

distribution for the continuous part and let

δli|q, vδl „

#

N p0, vδlq with prob. q

0 with prob. 1 ´ q
l P tα, ρu. (A.23)

Note that vδα is a 3 ˆ 3 matrix. For pδσi,u, δ
σ
i,ϵq we use an Inverse Gamma (IG) distribution

instead of a Normal distribution to capture the discrepancies:

δσi,m|q, νδσm , τδσm „

#

IG
`νδσm

2
,
τδσm
2

˘

with prob. q

1 with prob. 1 ´ q
m P tu, ϵu. (A.24)

We impose that Erδσi,ms “ 1 and reparameterize the prior distribution in terms of its variance

vδσm which leads to

νδσm “ 2v´1
δσm

` 4, τδσm “ 2v´1
δσm

` 2. (A.25)

Priors for Homogeneous Parameters. We consider the following prior distributions for

the homogeneous parameters

α „ N p0, vαq, ρ „ N p0, vρq, σ2
u,t „ IG

´νσu
2
,
τσu
2

¯

, σ2
ϵ,t „ IG

´νσϵ
2
,
τσϵ
2

¯

, q „ Bpa, bq

vδα „ W´1
pνδα ,Ψδαq , vδρ „ IG

´νδρ

2
,
τ δρ

2

¯

, vδσu „ IG
´νδσu

2
,
τ δσu
2

¯

, vδσϵ „ IG
´νδσϵ

2
,
τ δσϵ
2

¯

µs0 „ N pµ
s0
, vs0q, vs0 „ IG

´νs0
2
,
τ s0
2

¯

,

where Bpa, bq is the Beta distribution and W´1 pνδα ,Φδαq is the inverse Wishart distribution.

We collect the homogeneous parameters into the vector

θ “ rα1, ρ, σ21

u , σ
21

ϵ , q, vδα , vδρ , vδσu , vδσϵ , µs0 , vs0s
1
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and the hyperparameters that index the various prior distributions into the vector

λ “ rvα, vρ, νσu , τσu , νσϵ , τσϵ , a, b, νδα ,Ψδα , νδρ , τ δρ , νδσu , τ δσu , νδσϵ , τ δσϵ , µs0
, vs0 , νs0 , τ s0s.1

We can sample from the joint posterior of
`

α, ρ, q, vδα , vδρ , vδσu , vδσϵ , δ, z, σ
2
u, σ

2
ϵ , s

˘

using a

Gibbs sampling algorithm with eight blocks.

Conditional posterior of α. Let qyαit “ yit ´ H 1
itδ

α
i ´ sit and σ

u
it “ σu,t

a

δσi,u. Then

p
`

α|ρ, s, σ2
u, δ

σ
u

˘

9 exp

«

´

N
ÿ

i“1

T
ÿ

t“1

pqyαit ´ H 1
itαq

2

2σu
2

it

ff

exp

„

´
1

2

´

α ´ µ
α

¯1

v´1
α

´

α ´ µ
α

¯

ȷ

9 exp

„

´
1

2
pα ´ ᾱq

1v̄´1
α pα ´ ᾱq

ȷ

,

where

v̄α “

˜

v´1
α `

N
ÿ

i“1

T
ÿ

t“1

σu
´2

it HitH
1
it

¸´1

, ᾱ “ v̄α

˜

v´1
α µ

α
`

N
ÿ

i“1

T
ÿ

t“1

σu
´2

it Hitqy
α
it

¸

.

This implies

α|ρ, s, σ2
u, δ

σ
u „ N pᾱ, v̄αq . (A.26)

Conditional posterior of ρ. Let σϵit “ σϵ,t
a

δσi,ϵ. Then

p
`

ρ|s, σ2
ϵ , δ

σ
ϵ

˘

9 exp

«

´

N
ÿ

i“1

T
ÿ

t“1

ps̃it ´ ρsit´1q
2

2σϵ
2

it

ff

exp

«

´
pρ ´ µρq

2

2vρ

ff

9 exp

„

´
pρ ´ ρ̄q2

2v̄ρ

ȷ

,

where

v̄ρ “

˜

v´1
ρ `

N
ÿ

i“1

T
ÿ

t“1

σϵ
´2

it s2it´1

¸´1

, ρ̄ “ v̄ρ

˜

v´1
ρ µ

ρ
`

N
ÿ

i“1

T
ÿ

t“1

σϵ
´2

it sit´1s̃it

¸

, s̃it “ sit´δ
ρ
i sit´1.

This implies

ρ|
`

s, σ2
ϵ , δ

σ
ϵ

˘

„ N pρ̄, v̄ρq . (A.27)

Conditional Posterior of pqα, qρ, qσu , qσϵq: Same as (A.4), for l P tα, ρ, σu, σϵu.
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Conditional Posterior of pvδα , vδρq: Posterior of vδρ is the same as (A.5) while the posterior

of vδα is now a multivariate distribution.

ppvδα |zα, δαq 9

N
ź

i“1

„

|vδα |
´ 1

2 exp

ˆ

´
1

2
δα

1

i v
´1
δα δ

α
i

˙ȷzαi

|vδα |
´
νδα`3`1

2 exp

„

´
1

2
tr
`

Ψδαv
´1
δα

˘

ȷ

9 |vδα |
´
νδα`ψpzαq`3`1

2 exp

$

&

%

´
1

2
tr

»

–

¨

˝Ψδα `
ÿ

i|zli“1

δαi δ
α1

i

˛

‚v´1
δα

fi

fl

,

.

-

.

This implies

vδα |pzα, δαq „ W´1
`

ν̄δα , Ψ̄δα
˘

, (A.28)

where

ν̄δα “ νδα ` ψpzαq

Ψ̄δα “ Ψδα `
ÿ

i|zli“1

δαi δ
α1

i .

Conditional Posterior of pvδσu , vδσϵ q: Same as Algorithm A.1.

Conditional Posterior of pzρi , δ
ρ
i q: Posteriors pzρi , δ

ρ
i q are similar to (A.12 and A.13), except

for changes in the formulas to capture the heteroskedasticity:

Kρ
i “

qρ

1 ´ qρ

˜

vδρ

v̄δρi

¸´ 1
2

exp

˜

δ̄ρ
2

i

2v̄δρi

¸

. (A.29)

with

v̄δρi “

˜

v´1
δρ `

T
ÿ

t“1

σϵ
´2

it s2it´1

¸´1

, δ̄ρi “ v̄δρi

T
ÿ

t“1

σϵ
´2

it sit´1qs
ρ
it

qsρit “ sit ´ ρsit´1, σϵit “ σϵ,t

b

δσi,ϵ.

Conditional Posterior of pzσi,u, δ
σ
i,uq and pzσi,ϵ, δ

σ
i,ϵq are similar to (A.19 and A.20) with

moderate changes in the formulas.



Online Appendix – This Version: October 20, 2023 A.16

For m P tu, ϵu, the posterior odds of zσi,m “ 1 vs. zσi,m “ 0 are

Kσ
i,m “

qσm

1 ´ qσm

Γ
´

ν̄δσm
2

¯

Γ
´

v´1
δσm

` 2
¯

´

v´1
δσm

` 1
¯v´1

δσm
`2

´ τ̄δσ
i,m

2

¯

ν̄δσm
2

exp

˜

1

2

T
ÿ

t“1

σm
´2

it qy
σ2
m
it

¸

. (A.30)

where

ν̄δσm “ 2v´1
δσm

` 4 ` T,

τ̄δσi,m “ 2v´1
δσm

` 2 `

T
ÿ

t“1

σm
´2

it qy
σ2
m
it ,

qyσuit “ yit ´ H 1
itpα ` δαi q ´ sit,

qyσϵit “ sit ´ pρ ` δρi qsit´1.

Based on the posterior odds Kσ
i,m we can draw zσi,m as follows:

zσi,m|pYi, si, q
σm , σ2

m, δ
α
i , ρ, δ

ρ
i , vδσmq “

$

&

%

1 with prob.
Kσ
i,m

Kσ
i,m`1

0 with prob. 1
Kσ
i,m`1

. (A.31)

Overall, we obtain

δσi,m|pYi, si, z
σ
i,m, σ

2
m, δ

α
i , δ

ρ
i , vδσmq „

$

&

%

IG
´

ν̄δσm
2
,
τ̄δσ
i,m

2

¯

if zσi,m “ 1

1 if zσi,m “ 0
(A.32)

Conditional Posterior of µs0 and vs0 :

µs0 |psi0, vs0q „ N pµ̄s0 , v̄s0q, (A.33)

where

v̄s0 “
`

v´1
s0

` Nv´1
s0

˘´1

µ̄s0 “ v̄s0

˜

v´1
s0
µ
s0

` v´1
s0

N
ÿ

i“1

si0

¸

.

vs0 |psi0, µs0q „ IG
´ ν̄s0

2
,
τ̄s0,i
2

¯

, (A.34)
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where

ν̄s0 “ νs0 ` N

τ̄s0,i “ τ s0 `

N
ÿ

i“1

psi0 ´ µs0q
2 .

Conditional Posterior of sit and pzαi , δ
α
i q: We choose to draw sit and δ

α
i jointly with the

following representation:

qyβit “ yit ´ H 1
itα “ X 1

itβi ` σuituit,

and its matrix form

qY β
i “ Xiβi ` Σ

1
2
i,uui,

where the design matrix Xi contains Hit and dummies for sit:

Xi “

»

—

—

—

—

—

–

1 1 1 0 ¨ ¨ ¨ 0

1 2 0 1 ¨ ¨ ¨ 0
...

...
...

...
. . .

...

1 T 0 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

ffi

fl

(A.35)

βi “ rδαi0, δ
α
i1, si1, ... , siT s1 and Σi,u “ δσi,u diag

`

σ2
u,1, σ

2
u,2, ..., σ

2
u,T

˘

.

We construct the prior for βi to account for the sparse assumption in δα, which given by

βi|pρ, δ
ρ
i , z

α
i , q

α, vδα , Di,ϵq „ N

˜«

02ˆ1

0Tˆ1

ff

,

«

zαi vδα 02ˆT

0Tˆ2 V si

ff¸

(A.36)

zαi |qα “

#

0 with prob. 1 ´ qα

1 with prob. qα
,

The pt, τq elements of the T ˆT prior covariance matrix V si
can be calculated as follows:

V si
pt, tq “ pρ ` δρi q

2V si
pt ´ 1, t ´ 1q ` σ2

ϵ,tδ
σ
i,ϵ, t “ 1, . . . , T

V si
pt, τq “ pρ ` δρi q

|t´τ |V si

`

minpt, τq,minpt, τq
˘

, t “ 1, . . . , T and τ “ t,

with the understanding that V si
p0, 0q “ vs0 .
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Under zβi “ 1, βi is set to jointly follow a normal distribution. The marginalized likelihood

of Yi|pρ, δ
ρ, vδα , σ

2
u, σ

2
e , z

β
i “ 1q can be obtained by rearranging Bayes Theorem:

ppYi|ρ, δ
ρ, vδα , σ

2
u, σ

2
e , z

β
i “ 1q “

ppYi|ρ, δ
ρ, vδα , σ

2
u, σ

2
e , βi, z

α
i “ 1qppβi|ρ, δ

ρ, vδα , σ
2
u, σ

2
e , z

α
i “ 1q

ppβi|Yi, ρ, δρ, vδα , σ2
u, σ

2
e , z

α
i “ 1q

.

(A.37)

It is given by

ppYi|ρ, δ
ρ, vδα , σ

2
u, σ

2
e , z

β
i “ 1q “

p2πq´T
2 |Σi,u|´ 1

2 exp
´

´1
2
qY β1

i Σ´1
i,u

qY β
i

¯

p2πq
´T`2

2 |vβi |
´ 1

2

p2πq
´T`2

2 |v̄βi |
´ 1

2 exp
`

´1
2
β̄1
iv̄

´1
βi
β̄i
˘

“ p2πq
´T

2 |Σi,u|
´ 1

2

ˆ

|vβi |

|v̄βi |

˙´ 1
2

exp

ˆ

´
1

2
qY β1

i Σ´1
i,u

qY β
i `

1

2
β̄1
iv̄

´1
βi
β̄i

˙

,

where β̄i and v̄βi are posterior mean and variance of βi:

v̄βi “
`

v´1
βi

` X 1
iΣ

´1
i,uXi

˘´1
, β̄i “ v̄βi

´

X 1
iΣ

´1
i,u

qY β
i

¯

.

For zβi “ 0 we have β1
i “ r0, 0, 0, si1, ... , siT s. Then,

ppYi|ρ, δ
ρ, σ2

u, σ
2
e , z

β
i “ 0q “

p2πq´T
2 |Σu|´ 1

2 exp
´

´1
2
qY β1

i Σ´1
i,u

qY β
i

¯

`

2πV si

˘´ 1
2

`

2πV si

˘´ 1
2 exp

`

´1
2
s̄1
iv̄

´1
si
s̄i
˘

“ p2πq
´T

2 |Σu|
´ 1

2

ˆ

|V si
|

|V si |

˙´ 1
2

exp

ˆ

´
1

2
qY β1

i Σ´1
i,u

qY β
i `

1

2
s̄1
iv̄

´1
si
s̄i

˙

,

where s̄i and V si are posterior mean and variance of si when δ
α
i “ 0:

V si “
`

V ´1
si

` Σ´1
i,u

˘´1
, s̄i “ V si

´

Σ´1
i,u

qY β
i

¯

.

We conclude that the posterior odds of zβi “ 1 vs. zβi “ 0 are

Kβ
i “

qβ

1 ´ qβ

˜

|vβi ||V si |

|v̄βi ||V si
|

¸´ 1
2

exp

ˆ

1

2
β̄1
iv̄

´1
βi
β̄i ´

1

2
s̄1
iV

´1

si
s̄i

˙

. (A.38)
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We can draw zβi as follows:

zβi |pYi, ρ, δ
ρ, vδα , σ

2
u, σ

2
eq “

$

&

%

1 with prob.
Kβ
i

Kβ
i `1

0 with prob. 1

Kβ
i `1

. (A.39)

Moreover,

βi|pYi, z
β
i , ρ, δ

ρ, vδα , σ
2
u, σ

2
eq „

#

N
`

β̄i, v̄βi
˘

if zβi “ 1

δαi “ 0 and si „ N
`

s̄i, V si

˘

if zβi “ 0
. (A.40)

Conditional Posterior of si0: We sample si0 using simulation smoother conditional on

the posterior draws of si1 and other parameters:

si0|psi1, µs0 , vs0 , ρ, δ
ρ, σ2

uq „ N ps̄i,0|1, Pi,0|1q, (A.41)

where

s̄i,0|1 “ s̄i,0|0 ` Pi,0|0Φ
1
i1P

´1
i,1|0

`

si1 ´ Φi1s̄i,0|0

˘

,

Pi,0|1 “ Pi,0|0 ´ Pi,0|0Φ
1
i1P

´1
i,1|0Φi1Pi,0|0,

Pi,1|0 “ Φ1
i1Pi,0|0Φi1 ` σε

2

i0 ,

Φi1 “ ρ ` δρi ,

s̄i,0|0 “ µ
s0
,

Pi,0|0 “ vs0 .

Conditional Posterior of pσ2
u, σ

2
ϵ q: Posteriors for pσ2

u, σ
2
ϵ q are similar to (A.14), except for

a slight change in the formulas to reflect the time-variation in variance:

σ2
u,t|py, δq „ IG

ˆ

ν̄σu
2
,
τ̄σu,t
2

˙

, (A.42)

where

ν̄σu “ νσ ` N,

τ̄σu,t “ τσu `

N
ÿ

i“1

ryit ´ H 1
it pα ` δαi q ´ sits

2
{δσi,u,
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and

σ2
ϵ,t|ps, ρ, δq „ IG

ˆ

ν̄σϵ
2
,
τ̄σϵ,t
2

˙

, (A.43)

where

ν̄σϵ “ νσ ` N,

τ̄σϵ,t “ τσϵ `

N
ÿ

i“1

rsit ´ pρ ` δρi q sit´1s
2

{δσi,ϵ.
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C Additional Empirical Results

Table A-1 shows the numbers of units that share the same posterior median, i.e., how long

the flat segments in Figure 4 are. N is the number of individuals in the subsample and Nl

is the size of core l groups, l P tα, ρ, σu.

Table A-1: Size of Core Groups

τ N Nα Nα{N Nρ Nρ{N Nσu Nσu{N Nσe Nσe{N

1988 82 74 90.24% 82 100% 0 0% 0 0%
1991 88 32 36.36% 87 98.86% 0 0% 0 0%

In Figure A-1 we plot prior densities, which we take to be uniform, and posterior densities

for the q parameters that determines the probability of deviating from the core group. The

posterior mode for qρ is close to zero for both samples, which is consistent with the ρi

estimates being identical for most units, as could be seen in Figure 4. The posterior density

for qα stayed close to the prior density and is fairly flat. It has a small mode near 0.1 for the

1988 sample, and a small mode near 0.9 for the 1991 sample.

Figure A-1: Prior and Posterior Densities for q, SS-HIP-Hetsk, T “ 20

τ “ 1988 τ “ 1991

Notes: We overlay a Beta(1,1) prior density for qli (black, dotted) and posterior densities for qα (blue, solid),
and qρ (red, solid).
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Figure A-2: Post Prob. of Unit i Belonging to Core Group, SS-HIP-Hetsk, T “ 20

τ “ 1988 τ “ 1991
α
G
ro
u
p

ρ
G
ro
u
p

σ
u
G
ro
u
p

σ
ϵ
G
ro
u
p

In Figure A-2 we plot for each unit the posterior probability of belonging to the core

group, defined as Ptzli “ 0|Y1:N,1:T u.
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Figure A-3: Posterior Distribution of ŝi0 and ŝiT , SS-HIP-Hetsk, T “ 20

τ “ 1988 τ “ 1991
ŝ i

0
ŝ i
T

Notes: ŝi0 and ŝiT are posterior mean estimates.

In Figure A-3 we plot the cross-sectional distribution of the posterior mean estimates ŝi0

and ŝiT .

Table A-2: Probability Distributions of Experience in the Starting Period

Subsample Mean Std Min 25% Median 75% Max

1988 10.27 4.22 2 7 10 13 20
1991 9.39 3.92 2 7 9 11 20

Table A-2 provides descriptive statistics of the distribution of years of experience in the

starting period of the two samples considered in the main text.
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