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a b s t r a c t

Rapidly diminishing Arctic summer sea ice is a strong signal of the pace of global climate
change. We provide point, interval, and density forecasts for four measures of Arctic sea
ice: area, extent, thickness, and volume. Importantly, we enforce the joint constraint
that these measures must simultaneously arrive at an ice-free Arctic. We apply this
constrained joint forecast procedure to models relating sea ice to atmospheric carbon
dioxide concentration and models relating sea ice directly to time. The resulting ‘‘carbon-
trend’’ and ‘‘time-trend’’ projections are mutually consistent and predict a nearly ice-free
summer Arctic Ocean by the mid-2030s with an 80% probability. Moreover, the carbon-
trend projections show that global adoption of a lower carbon path would likely delay
the arrival of a seasonally ice-free Arctic by only a few years.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Understanding and forecasting the climatic observational record (COR) is critical for a variety of tasks – notably, the
lanning of future mitigation and adaptation infrastructure and investment. The COR has many diverse elements, such
s temperature (means, extremes, variability, etc.), extreme events (storms, floods, droughts, wildfires, etc.), and other
hysical attributes (sea level, cloud coverage, glacial extent, etc.). These elements differ importantly at a spatial level,
nd the Arctic region has emerged as a salient focal point for investigations of ongoing climate change. In particular,
rctic melting is a conspicuous effect of climate change, which has warmed the Arctic two to three times faster than the
lobal average. The melting Arctic also promotes additional future climate change, in part due to an ‘‘albedo’’ feedback
mplification loop as more reflective Arctic sea ice is replaced by darker open water. Along with global effects, a melting
rctic also has pervasive regional consequences. For example, in the Arctic region, less sea ice will reduce the cost of
hipping, promote the extraction of natural resources, and expand tourism. Together, at a global and regional level, a
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melting Arctic will result in widespread and transformative impacts, opportunities, and risks (Alvarez et al., 2020; Lynch
et al., 2022; Brock and Miller, 2023).

Large-scale climate models have been the source of much of the forward-looking global and Arctic climate analysis.
hese models attempt to capture the fundamental physical drivers of the earth’s climate with much spatial and temporal
etail. Such structural models are invaluable for understanding climate variation; however, from a forecasting perspective,
limate models have been less adept and, in particular, have largely underestimated the amount of lost sea ice in recent
ecades (e.g., Stroeve et al., 2012; Rosenblum and Eisenman, 2017). As a practical complementary approach, statistical
rojections from parsimonious dynamic time series representations often produce forecasts that are at least as accurate
s detailed structural models (Diebold and Rudebusch, 2022). COR forecasting can be facilitated by using reduced-form
conometric/statistical methods, which are designed to summarize the relevant data patterns (correlations) regardless of
he deep underlying causal climatic mechanisms. This reduced-form agnosticism is valuable for COR forecasting because
he granular climate dynamics are incompletely understood – witness the fifty or so different CMIP6 climate models and
heir widely-differing projections (e.g., Notz and SIMIP, 2020). Specifically, for forecasting Arctic sea ice, there is already
ome evidence that small-scale econometric/statistical models can have some success (Wang et al., 2016; Diebold and
udebusch, 2022).
In this paper, we therefore attempt to push forward the econometric/statistical analysis of the long-run future evolution

f Arctic sea ice. Of particular interest are probability assessments of the timing of an ice-free Arctic, an outcome with vital
conomic and climate consequences (Jahn et al., 2016). A key contribution of our analysis is that we take a multivariate
pproach to the various measures of Arctic sea ice. Specifically, we consider three aspects of pan-Arctic sea ice: surface
overage (measured in two ways – area and extent, to be defined shortly), thickness, and volume. In theory, these three
easures of sea ice should be perfectly related. Volume would equal the product of surface coverage and thickness, so
odeling any two would imply a specification for the third. In practice, however, each sea-ice indicator is based on
blend of pure observations and model interpretations and interpolations. As a result, measurement differences and
rrors introduce discrepancies between the various indicators and drive wedges between them, even if the amount of
easurement error has generally diminished over time as observational and modeling methods have improved. Thus, the
arious measures of sea ice are not perfectly related, and it may be beneficial to consider all of them.
We characterize the various measures of September Arctic sea ice as time series processes and examine the likely

uture path toward seasonal ice-free conditions with continued global warming. September is the month with the least
easonal ice, and we focus on projecting the timing of the first ice-free September, exploring both a literally ice-free Arctic
IFA) and an effectively or nearly ice-free Arctic (NIFA).1 We model sea-ice area, extent, thickness, and volume, and we
mplement multivariate models that constrain these measures to reach zero simultaneously. We anchor our analysis on
rea, sequentially considering pairwise blends of area with each of the other indicators. The area-extent pair is essentially
ased on only observed data; the area-thickness pair integrates the two key indicators characterizing sea ice; and the
rea-volume pair is closest to an all-indicator analysis that incorporates area, thickness, and extent.
We implement our constrained joint forecasting procedure in ‘‘carbon-trend’’ models that relate sea ice to atmospheric

arbon dioxide (CO2) concentration (with this time series denoted as CO2C). This allows us to condition our forecasts
n various carbon scenarios. We also check our carbon-trend results against similarly-constrained ‘‘time-trend’’ models
hat relate sea ice simply to time. Finally, we verify the consistency of the two approaches, and we use them to make
robabilistic forecasts of the arrival years of NIFA and IFA.
There is of course a large literature on measurement and modeling of declining Arctic sea-ice extent and area, and

nsightful overviews include Stroeve et al. (2012), Shalina et al. (2020a), and Fox-Kemper et al. (2022). For analyses of
he measurement and modeling of declining thickness and volume, see, e.g., Stroeve and Notz (2018) and Shalina et al.
2020b). We will have more to say throughout the paper about the literature on Arctic sea ice and how our results relate
o it. For now, however, we emphasize again that our multivariate modeling of area, extent, thickness, and volume –
especting in particular the fact that if and when they vanish, they must vanish simultaneously – sets our analysis apart.
n particular, the present paper is quite different from our earlier research, Diebold and Rudebusch (2022), which compares
tructural climate models to reduced-form statistical models based on polynomial trends. The present paper avoids any
tatistical vs structural forecast model comparisons. Instead, it dives more deeply into the statistical analysis and modeling,
ncorporating much more information to form statistical forecasts: (1) more sea-ice indicators, (2) bivariate models with
qual-IFA constraints imposed, and (3) conditioning on a key geophysical covariate (CO2 concentration), instead of just a
eneric polynomial trend on a single sea-ice indicator.
We proceed as follows. In Section 2, we introduce our four sea-ice indicators. In Section 3, we model and forecast the

ndicators using regressions on atmospheric CO2 concentration (‘‘carbon trends’’), producing point and interval forecasts.
n Section 4, we provide a major robustness check by modeling and forecasting using direct time trend regressions (‘‘time
rends’’), assessing the consistency of the carbon-trend and time-trend forecasting approaches. In Section 5, we use both
pproaches to provide full probabilistic forecasts of the two objects of ultimate interest: the arrival years of IFA and
IFA. In Section 6, we provide a second major robustness check by redoing most of the carbon-trend analysis using
n alternative carbon measure, cumulative anthropogenic CO2 emissions (CO2E), assessing the consistency of the two

carbon-trend versions. We conclude in Section 7.

1 We follow the usual convention and define NIFA as sea-ice coverage of less than 106 km2 as described below.
2



F.X. Diebold, G.D. Rudebusch, M. Göbel et al. Journal of Econometrics 236 (2023) 105479

t
m

o

s
a
a

S
o
f

2. Measures of Arctic sea ice

We consider four key aspects of Arctic sea ice: Surface coverage (of which there are two measures, area and extent),
hickness, and volume. Our analysis focuses on the seasonal minima for these indicators, specifically, the September
onthly average at a pan-Arctic scale.2

2.1. Surface coverage (area and extent)

Arctic sea-ice surface coverage has been well measured using satellite-based passive microwave sensing since late
1978. The Arctic’s surface is divided into a grid of cells, and for each cell, satellite sensors measure the amount of reflected
solar radiation. This reflected energy varies from cell to cell depending on the relative cell coverage of sea ice and open
water, as the latter absorbs more radiation. The resulting measured ‘‘brightness’’ is converted into a fractional measure of
sea-ice ‘‘concentration’’ for cell i at time t , denoted ci,t . The individual ci,t are then aggregated into two standard, somewhat
different measures of overall sea-ice coverage.

The first of these, ‘‘sea-ice area’’ (SIA), sets measured concentration in each cell to zero if it is below .15 and retains
the satellite-recorded value otherwise:

cSIAi,t =

{
0, if ci,t ≤ .15
ci,t , otherwise. (1)

All grid cell areas are then multiplied by cSIAi,t , and their weighted sum over the entire Arctic is denoted SIAt . As a result,
SIA is the measured coverage of all Arctic grid cells with at least 15 percent sea-ice concentration.

The second measure of coverage, ‘‘sea-ice extent’’ (SIE), also sets measured concentration below .15 to zero but
otherwise adjusts it upward to full coverage, or 1:

cSIEi,t =

{
0, if ci,t ≤ .15
1, otherwise. (2)

In this case, all grid cell areas are multiplied by cSIEi,t , and their weighted sum is total Arctic SIEt . Thus, SIE is the total area
f all of the ocean grid cells that are measured to have at least 15% sea-ice coverage.
The up-rounding in the construction of SIE serves as a bias correction to offset satellite sensors’ tendency to mistake

hallow pools of sea-ice surface melt for open sea.3 There are costs and benefits of such a bias correction, and both SIA
nd SIE are widely employed in research and forecasting. We will examine both, using September monthly average SIA
nd SIE data from 1979 to 2021 from the National Snow and Ice Data Center (NSIDC).
The up-rounding in the construction of SIE also implies that by definition SIE ≥ SIA, and indeed, in the historical data,

IE has been substantially higher than SIA. For our analysis, the crucial definitional constraint is that these two measures
f sea-ice coverage can only equal zero under the same condition, that is, when all Arctic grid cells have no more than
ifteen percent coverage (ci,t ≤ .15 for all i). In that case, the two measures will be equivalent, so SIA = SIE = 0. This
constraint that both indicators must reach zero at the same time will be the crucial timing restriction that allows us to
construct a joint projection of pan-Arctic September SIA and SIE.

2.2. Thickness

Our next sea-ice indicator is thickness, denoted SIT . Sea-ice thickness – the distance between the ocean underneath
and any snow coverage or air above the ice – is challenging to measure but allows a fuller understanding of sea-ice
conditions.4 In the past, data on sea-ice thickness have been obtained via a variety of methods including submarine
records, ocean floor buoys, bore holes, helicopter and sled surveys, and satellite measures, but these sources have varying
accuracy and availability by time and location. A popular alternative to these disparate thickness measures is produced
by the Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) from the University of Washington’s Polar
Science Center (Zhang and Rothrock, 2003). The PIOMAS thickness indicator incorporates (or assimilates) data such as
the NSIDC sea-ice concentration measure as well as atmospheric information such as wind speed and direction, surface
air temperature, and cloud cover. However, the PIOMAS data are importantly driven by an ocean and sea-ice physical
model that characterizes how sea-ice thickness evolves over location and time in response to dynamic and thermodynamic
forcing and mechanical redistribution such as ridging. That is, the PIOMAS thickness data are effectively a model construct,
although they have been largely validated against the available observational data. For example, Selyuzhenok et al. (2020),
building on Schweiger et al. (2011), report that the spatial pattern of PIOMAS ice thickness agrees well with observations
derived from in situ and satellite readings, and Labe et al. (2018) note that decadal trends in thickness appear realistically
reproduced. Surveys that reach a similar conclusion include Leppäranta et al. (2020, section 8.4) and Shalina et al. (2020b,
section 5.6).

2 See Appendix A for data sources and details.
3 See https://www.ncdc.noaa.gov/monitoring-references/dyk/arctic-ice for details.
4 See, for example, Bunzel et al. (2018), Chevallier et al. (2017), Shalina et al. (2020b), Notz and SIMIP (2020), and Zygmuntowska et al. (2014).
3
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2.3. Volume

Our final sea-ice indicator is volume, SIV , which is also supplied via the model-based PIOMAS measurement. Specifi-
cally, across a grid of cells, this series combines the PIOMAS thickness and the sea-ice coverage data to produce sea-ice
volume cell by cell. Of course, in theory, volume, which represents the entire mass of sea ice, should be the most
comprehensive indicator of Arctic sea ice. On the other hand, SIV , which is produced as the product of surface coverage
and thickness, inherits measurement error from both of those series and appears to be subject to the most uncertainty
in measurement.

2.4. Remarks on a joint zero-ice constraint

As noted above, our joint estimation approach relies on a simultaneous zero-ice constraint on more than one measure
of sea ice. The two sea-ice coverage series, SIA and SIE, share data sources and definitions that effectively hard-wire or
force such a simultaneous ice-free Arctic. A similar exact relationship is less assured for thickness and volume as these
depend on model-based imputations. Furthermore, SIT and SIV do not impose the 15% cutoff used in SIA and SIE, which
otentially could lead to later ice-free dates for thickness and volume (though our empirical results below suggest the
pposite timing). However, given that all four indicators depend on the amount of sea-ice coverage, it is likely that SIA,
IE, SIT , and SIV will all reach zero very closely in time if not simultaneously, and we will assess the imposition of that
onstraint in the estimation of sea-ice dynamics.

. Linear carbon-trend models, fits, and forecasts

Here we explore the empirical relationships between the four Arctic sea-ice indicators and atmospheric CO2 concen-
ration. We then use these representations to forecast the likely progression of a melting Arctic and, specifically, the years
f first IFA and NIFA.5

.1. Atmospheric CO2 concentration data

We measure CO2 using readings on atmospheric concentration rather than cumulative emissions, which is a widely
sed alternative (e.g., Notz and Stroeve, 2016). Atmospheric CO2 concentration has notable advantages in this regard.
t is a direct measure of the amount of heat-trapping gasses in the atmosphere – the source of the melting Arctic. In
articular, unlike cumulative emissions, atmospheric concentration can account for time-varying CO2 absorption rates, so
s the efficacy of natural terrestrial and oceanic carbon sinks change over time, concentration can better capture the extent
o which greenhouse gases are driving climate change. In addition, atmospheric CO2 concentration, which is measured
y direct air sampling, is subject to little measurement error. By contrast, fossil CO2 emissions are indirectly calculated
rom energy, fuel use, and cement production data, while emissions from land-use changes are based on deforestation
stimates.
Our atmospheric CO2 concentration series (measured in parts per million, ppm) is shown in Fig. 1. The historical data

1979–2021) are from the NOAA Global Monitoring Laboratory, as measured at the Mauna Loa Observatory in Hawaii. The
our projected scenarios (2022-2100, shaded) are from the SSP Public Database.6 These are the standard SSP scenarios
enoted SSP1 2.6 (which has very low emissions or radiative forcing), SSP2 4.5 (low emissions), SSP3 7.0 (medium), and
SP5 8.5 (high).7 They are distinguished by the amount of progress made in reducing further concentration increases, as
hown by the variation in their upward curvature. We focus on the SSP3 7.0 scenario as a baseline but also show that our
esults are qualitatively robust to use of the low and high emissions scenarios.

.2. The carbon-trend model

Various researchers – including Johannessen (2008), Notz and Stroeve (2016), and Stroeve and Notz (2018) – have
dentified a linear empirical relationship between observed Arctic sea-ice area and CO2.8 This linear carbon-trend
elationship, which fits remarkably well in the observed data, can be expressed as:

SIAt = a + b CO2C t + εt , (3)

here SIAt is sea-ice area, CO2Ct is atmospheric CO2 concentration, and εt represents deviations from the linear fit.

5 Although other greenhouse gases, such as methane, are also responsible for global warming, CO2 is by far the most important. Moreover,
xploration of a broad aggregation of greenhouse gases that takes into account the varying global warming impacts and duration of different gases
so-called ‘‘CO2 equivalent’’ – produced results similar to those reported below.
6 See Appendix A for details.
7 See, for example, Arias (2022).
8 Some researchers measure CO2 as atmospheric concentration and others as cumulative emissions. As discussed above, we employ the former;
owever, as shown in Section 6, our results are robust to use of cumulative emissions.
4



F.X. Diebold, G.D. Rudebusch, M. Göbel et al. Journal of Econometrics 236 (2023) 105479

N

p

Fig. 1. Atmospheric CO2 concentration scenarios.
otes: We show historical data and four projected scenarios for atmospheric CO2 concentration, measured in parts per million (ppm). The historical

period (to 2021) is unshaded, and the out-of-sample period is shaded. The lower dashed horizontal line denotes the current concentration level, and
the upper dashed horizontal line provides our estimate of the CO2 concentration level associated with first NIFA using the SIA univariate carbon-trend
specification. See text for details.

The regression intercept, a, calibrates the level of sea-ice coverage, and the slope, b, provides a measure of the Arctic-
carbon response. A negative value for b captures the diminishing coverage of Arctic sea ice as greenhouse gases accumulate
in the atmosphere.9 Eq. (3) also can be used to characterize the occurrence of first IFA in terms of CO2C. In particular, the
level of atmospheric CO2 concentration consistent with the first occurrence of an ice-free Arctic (SIAt = 0) occurs when
CO2C t = −a/b.

The ‘‘univariate’’ representation (3) has typically been used to fit and forecast a single sea-ice indicator – either sea-ice
area or extent. We generalize this analysis to consider thickness and volume as well. More importantly, we also introduce a
joint modeling strategy that allows two or more sea-ice indicators to be modeled together. Such a representation combines
indicators using a simultaneous zero-ice constraint. For example, for two indicators, the ‘‘bivariate’’ linear carbon trend
model with a ‘‘simultaneous first IFA’’ constraint is given by

xt = ax + bx CO2C t + εx
t

yt = ay +
aybx

ax
CO2C t + ε

y
t ,

(4)

where xt and yt are two sea-ice indicators. This regression model has jointly constrained slopes and intercepts so that
xt = yt = 0 at the same level of CO2C t and can be estimated via non-linear least squares.

Like the univariate Eq. (3), the bivariate system (4) can be used to characterize a first (simultaneous) IFA in terms of
CO2C – that is, a concentration level for a seasonal ice-free Arctic.

For our bivariate empirical analysis with (4), we always set xt to SIAt and yt to one of the other sea-ice indicators
(SIEt , SITt , or SIVt ).10 That is, our focus here is on the three bivariate combinations: SIA+SIE, SIA+SIT , and SIA+SIV .
Each indicator pair brings additional information to the estimation of the first IFA year by incorporating additional
indicators with SIA, which provides a common benchmark for comparing results. In addition, each pair has idiosyncratic
characteristics that provide useful differentiation. The SIA+SIE pair is the only one that is based on data that are essentially
directly observed, and these two indicators also share a clear-cut zero-ice constraint by definition. However, this pair is
limited to only sea-ice coverage, while the other combinations account for thickness as well. The SIA+SIT pair integrates

9 As regards possible endogeneity of CO2C , note that we are not attempting to estimate a structural coefficient. Rather, we are simply estimating a
reduced-form best linear predictor under quadratic loss, for which least squares in levels is always consistent, regardless of the endogeneity/exogeneity
status of the regressors, and regardless of whether the series are stationary, deterministically trending, stochastically trending (integrated), or
cointegrated (Sims et al., 1990).
10 Of course, the bivariate first-IFA-constrained modeling approach can be generalized to more than two indicators. Indeed, we have applied it
to 3- and 4-variable sets of our sea-ice indicators and obtained similar empirical results to those reported below. Subtleties also arise with 3-
and 4-variable systems, such as additional potentially relevant restrictions among indicators, as when, for example, SIV is at least the approximate
roduct of SIE and SIT .
5
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the two key elements necessary for measuring sea ice, but again, SIT is a model-processed measure that has greater
easurement error. The SIA+SIV pair combines area with the most comprehensive measure of sea ice, but again, at a

ikely cost of less measurement accuracy.
It is worth highlighting three aspects of our approach. The first is our use of pure-trend bivariate models with no lags.

n our view, such models are well suited to our dataset. Our use of annual (September) sea-ice indicators renders greater
ynamic generality unnecessary. For example, the first autocorrelation of detrended September SIE is only 0.06. Also,
egrees of freedom are scarce in our sample of roughly 40 annual observations. An alternative vector autoregression (VAR)
pecification would gain little from adding dynamics at the cost of a profligate parameterization; a 4-variable VAR(3), for
xample, would have more than 50 parameters.
The second aspect of our approach is use of fixed deterministic carbon trends with no breaks. We intentionally skirt the

nit-root vs. trend-break minefield. That debate remains unresolved in macroeconomics, for example, after more than half
century of research, as standard data simply are not very informative about the hypotheses of interest.11 Nevertheless,
ne can interpret our carbon trend regressions as cointegrating regressions under a unit-root worldview, and our focus
n fixed carbon trends as a simple and accurate empirical approximation, as per the fit described below in Fig. 2.
The third aspect of our approach is use of linear carbon trends, which might be violated by episodes of prolonged

atural variation or by nonlinear shifts or tipping points in the ice-carbon linkage. Our stochastic modeling methodology
ccounts for natural variation, although its specification may be imperfect. Natural variation is emphasized in Miller and
am (2020) as a potential source of a future slowdown in Arctic ice melting. However, the ‘‘hiatus’’ in global warming
f 1998–2012 had a minor effect on the pace of Arctic melting, which may reflect its potential status as measurement
rror. Alternatively, as sea-ice melt depends importantly on polar conditions, Arctic amplification of temperature may
ask such temporary global fluctuations.
Regarding nonlinearities, following the earlier literature, we are comfortable with linear carbon trends as a suitable

mpirical approximation, especially in light of the excellent fit evident in Fig. 2 and discussed below. Although many
otential factors could produce a nonlinear ice-carbon relationship, linearity turns out to be a remarkably robust
pproximation for the entire satellite-era observational record, regardless of whether CO2 is measured as cumulative
missions or atmospheric concentration (e.g., Eisenman and Wettlaufer, 2009; Tietsche et al., 2011; Winton, 2011; Notz
nd Stroeve, 2016; Notz and SIMIP, 2020). Moreover, the empirical climate-science evidence on linearity of the ice-carbon
elationship continues to accumulate; see for example the recent work of Bennedsen et al. (2023), who work in a very
eneral nonlinear state space environment, allowing for nonlinear carbon trend, but find no need for nonlinearity. The
uthoritative recent review of Wang et al. (2023) accurately summarizes the state of current knowledge:

The literature points toward a linear, predictable response of summer sea ice extent in response to greenhouse gas
emissions, despite large inter-annual variability in weather patterns, rather than an abrupt transition to seasonally
ice-free conditions (monthly average sea ice area of less than 1 million km 2) consistent with tipping point behavior
(p. 44).

hat is, tipping points are unlikely to affect Arctic sea ice carbon-trend linearity, even if they affect other aspects of climate
hange.
Of course, moving forward, the effects of diminished albedo, greater storm-generated wave action, or permafrost

elt may notably accelerate sea-ice loss, or, alternatively, greater cloud cover in a warming planet may retard that loss.
here are several subtleties regarding a potential melting permafrost tipping point (e.g., Vaks et al., 2020). Permafrost
egradation can occur as gradual top down thaw or as abrupt collapse of thawing soil. Such melting permafrost releases
oth methane and CO2. The exact timing and proportion of these releases is uncertain, but to the extent that CO2 and

non-CO2 greenhouse gases (GHGs) remain in a similar proportion, our linear carbon trends will still hold approximately.
The CO2 emissions time trajectory and the sea-ice time trends, however, would change. A permafrost melt that quickens
the pace of warming strengthens our thesis that Arctic sea ice is melting more quickly than widely projected.

In closing this subsection, we note that the theoretical climate science literature has also gravitated toward linearity, as
summarized by Hillebrand (2023), precisely because of the compelling empirical evidence discussed above.12 Important
linear modeling of carbon cycle land and ocean sinks, for example, includes not only the classic work of Bacastow and Keel-
ing (1973) but also the more-recent work of Raupach (2013). Similarly, important linear modeling of atmosphere/ocean
energy balance ranges from the classic work of Budyko (1969) and Sellers (1969), to more recent work that introduces
two-layer energy-balance models with linear heat transfer between atmosphere/ocean surface and deep-ocean layers,
such as (Gregory, 2000) and Held et al. (2010).

3.3. Carbon-trend fits and forecasts in ice-carbon space

Fitted linear carbon trends for all four Arctic sea-ice indicators are shown in Fig. 2, along with sea-ice forecasts under
an assumed SSP3 7.0 carbon path in the shaded sample.

11 Classic macroeconomic work on stochastic vs. deterministic trend, with or without trend breaks, includes Nelson and Plosser (1982) and Perron
(1989), among many others; Stock (1994) provides a thorough survey. Climate economics work grappling with the same issues includes Kaufmann
et al. (2006) and Estrada and Perron (2019), among many others.
12 The basic theoretical idea underlying linearity is the insight that climate system response fluxes may be approximated linearly, while still
reproducing many aspects of the historical climate record – including but not at all limited to carbon-trend linearity, as in the classic work of Raupach
(2013).
6
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Fig. 2. September Arctic sea-ice indicators:
Estimated linear carbon trends in ice-carbon space under SSP3 7.0.
Notes: Each panel displays a pair of sea-ice indicators graphed against CO2C (atmospheric CO2 concentration, measured in ppm). We show extent
in blue (measured in 106 km2), area in black (measured in 106 km2), thickness in red (measured in m), and volume in green (measured in 103 km3).
In the univariate column, we show linear carbon-trend fits and projections based on Eq. (3). In the bivariate column, we show linear carbon-trend
regression fits and forecasts constrained to reach zero simultaneously, based on Eq. (4). The historical sample period (unshaded) is 1979–2021, and
the projection intervals obtained by simulation have 90% coverage. See Appendix B for details.

Each panel graphs a pair of sea-ice measures against the atmospheric CO2 concentration. Unconstrained univariate
results appear in the left panels, and constrained common-IFA bivariate results for various pairs of indicators appear in
the right panels. The black irregular lines show SIA (measured in 106 km2) versus CO2C, and the blue, red, and green
irregular lines are for SIE, SIT , and SIV (measured in 106 km2, m, and 103 km3, respectively). These various standard units
of measurement are such that the pairs of SIA, SIE, SIT , and SIV can be plotted conveniently together in the various panels
of Fig. 2, but this convenience is irrelevant for our results. Trend regression coefficient estimates depend on the choice of
measurement units, but, crucially, the implied estimates of our key objects of interest, namely, the extrapolated years of
the first ice-free Arctic, do not depend on these units.
7
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Table 1
September arctic sea-Ice indicators:
Linear CO2 Carbon trend estimates and projections (Under SSP3 7.0).

Model b̂ R2 First IFA First NIFA (Area)

CO2C (ppm) year CO2C (ppm) year

Unconstrained Univariate Models

Area −0.04
(0.003)

0.84 488 2039 464 2033

Extent −0.04
(0.003)

0.80 514 2045

Thickness −0.01
(0.001)

0.86 484 2038

Volume −0.17
(0.009)

0.90 437 2026

Constrained Bivariate Models

Area −0.03
(0.003) 0.82 509 2044 480 2037Extent

Area −0.04
(0.002) 0.84 488 2039 460 2032Thickness

Area −0.06
(0.003) 0.58 445 2028 430 2024Volume

Notes: We estimate linear CO2C carbon-trend models for SIA, SIE, SIT , and SIV from 1979 to 2021. The
top panel shows univariate models for each indicator, and the bottom panel shows constrained bivariate
models for SIA paired with SIE, SIT , or SIV that impose a simultaneous first IFA. We report parameter
estimates, R2 ’s, and projected concentrations and years at first IFA and first NIFA (the latter for SIA
only). The first IFA and NIFA years are based on the time path under the SSP3 7.0 scenario. Throughout,
standard errors appear in parentheses. See text for details.

In Fig. 2, linear carbon trends, again colored black, blue, red, and green for SIA, SIE, SIT , and SIV , are fitted to the data
in the unshaded sample. Their fit illustrates how well the linear regressions capture the relationships between the sea-ice
indicators and atmospheric CO2 concentration. For each measure, the historical data cluster quite tightly around the fitted
carbon trends. This remarkably robust linearity has been noted for sea-ice area in the literature (e.g., Notz and Stroeve,
2016), and here we generalize this result to other measures. In percentage terms, Arctic sea-ice coverage and thickness
have trended downward at a similar rate, with SIE, SIA, and SIT falling by about 50% over the sample. When combined,
these declines account for the 75% drop in SIV over the sample.

In the shaded regions of Fig. 2, the carbon trends are extrapolated beyond the historical sample until the arrival of
an ice-free Arctic. The unconstrained univariate column reveals that projected carbon at first IFA is higher for SIE than
for SIA, slightly lower for SIT , and notably lower for SIV . Comparing the univariate and constrained bivariate columns of
Fig. 2, one sees that imposition of the simultaneous first-IFA constraint changes the slopes of the fitted and extrapolated
carbon trends. This is consistent with the fact that for each pair of indicators, the common constrained first-IFA carbon
levels lie between the two unconstrained first-IFA carbon levels.

The qualitative insights from Fig. 2 are detailed in Table 1. The estimated b’s are all negative and highly statistically
significant, and all R2 values are above .80. The univariate projected first-IFA concentrations for SIA, SIE, SIT , and SIV
are 488 ppm, 514 ppm, 484 ppm, and 437 ppm, respectively. When SIA is modeled jointly with SIE, SIT , and SIV , the
bivariate constrained projected first-IFA concentrations are 509 ppm, 488 ppm, and 445 ppm. That is, the bivariate first-
IFA carbon levels are higher or lower than the univariate estimate depending on which additional indicator is blended
with SIA. Note that the bivariate constrained blending of SIA with the other indicators reduces the range of the projected
first-IFA concentrations; the univariate range is 514 ppm − 437 ppm = 77 ppm, whereas the constrained bivariate range
is 509 ppm − 445 ppm = 64 ppm.

While our bivariate common first-IFA constraint imposes the joint occurrence of a zero-ice event, the literature has
often focused on the occurrence of a nearly ice-free Arctic, or NIFA, defined as an SIA or SIE level of 1 million km2 or
less. This definition reflects a view that certain Northern coastal regions, notably, the Canadian Arctic Archipelago, may
retain small amounts of landfast sea ice even after the open Arctic Sea is ice free (Wang and Overland, 2009). However,
the resistance of such landfast ice to melting remains an open research issue, and there is much uncertainty about how
resilient such a circumscribed ‘‘Last Ice’’ refuge will be to further warming (Cooley et al., 2020; Mudryk et al., 2021;
Schweiger et al., 2021). Reflecting this uncertainty, while we also consider the usual definition of a nearly ice-free Arctic
(106 km2) for SIA and SIE, we do not account for any possible structural shift in near-zero sea-ice dynamics.

Accordingly, Table 1 reports the projected first-NIFA concentrations for SIA. For SIT and SIV , there are no similar
definitions of nearly ice-free concentrations in the literature, so we concentrate on the occurrence of a first NIFA only
in SIA. Of course, any first-NIFA concentration is lower than the associated first-IFA level, but the precise difference
depends on the indicator(s) examined and model used (univariate vs. bivariate). The univariate projected SIA first-NIFA
concentration is 464 ppm. It almost matches the constrained bivariate SIA+ SIT SIA first-NIFA projection at 460 ppm, but
is still much higher than that for SIA + SIV , and lower than that for SIA + SIE. The range of the first-NIFA concentration
projections is 480 ppm - 430 ppm = 50 ppm.
8
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The ‘‘carbon budget’’ is a popular concept used to quantify the remaining amount of carbon that can be emitted
ntil some climate event is reached. Analogously, we consider a carbon budget as the difference between the current
tmospheric CO2 concentration and the concentration associated with the first occurrence of IFA or NIFA. Given a 2021
O2C value of 417 ppm and an estimated concentration of 464 ppm at first NIFA (measured under the SIA univariate

model), our estimate of the Arctic carbon budget available until the likely occurrence of a nearly ice-free Arctic is 47 ppm.
This concentration carbon budget is slightly higher or lower for the other model pairs.

Finally, although we have thus far discussed only point forecasts, we also provide simulation-based 90% interval
forecasts in Fig. 2, shown as shaded regions around the point forecasts.13 The intervals are generally quite narrow, despite
their appropriate widening as the projection horizon lengthens. ote also that our models are constrained in expectation
only; that is, their conditional mean functions are constrained but their shock variances are not, so that some intervals
are always wider than others (compare, e.g., the SIA and SIV intervals).

There are of course many under-appreciated or unmodeled aspects of Arctic sea-ice diminution that may affect the
accuracy of both our point and interval forecasts. Some of these may speed or slow sea-ice loss. They include exceptional
internal variation, which may result in a warming hiatus (Miller and Nam, 2020) that slows loss, and tipping points
associated with methane release from permafrost melting (Chylek et al., 2022), which could promote an even steeper
decline in Arctic sea ice.

3.4. Carbon-trend fits and forecasts in ice-time space

The monotonically increasing CO2 concentrations in the historical data and SSP projected scenarios of Fig. 1 allow us to
translate carbon-trend representations like (3) (in ice-carbon space) into time-trend representations (in ice-time space).
In particular, the one-to-one SSP scenario mappings allow us to translate the first IFA/NIFA carbon level projections into
projected first IFA/NIFA years, conditional on the SSP scenario.

Moreover, the curvature of the SSP scenarios produces a curvature in the time trends implied by the linear carbon
trends. Because SIA is linearly related to CO2C and the SSP scenarios used to convert carbon trends into time trends
are nonlinear, the implied SIA time trend will be nonlinear. For example, with the CO2 concentration in the SSP 7.0
scenario increasing over time at an increasing rate, the implied sea-ice time trend will be decreasing at an increasing
rate. Of course, translating the carbon-trend forecasts into ice-time space requires a second layer of conditioning relative
to the carbon-trend forecasts in ice-carbon space insofar as inverse SSP scenarios are used to infer ice-time profiles,
including NIFA and IFA times. That is, the timing of the first NIFA predictions from a given estimated carbon-trend model
is conditional on the assumption that future emissions follow a certain SSP path.

The implied fitted and forecasted nonlinear time trends are shown in Fig. 3, the format of which parallels that of Fig. 2.
The implied time trends are obtained by running the fitted carbon trends of Fig. 2 through the (inverse) concentration
schedule SSP3 7.0 of Fig. 1. Accordingly, each concentration in ice-carbon space yields a corresponding time in ice-time
space. For example, as discussed earlier, our univariate estimate of concentration at first NIFA is 464 ppm. As seen by
following the upper dashed horizontal line in Fig. 1 (and as recorded in Table 1), a concentration of 464 ppm translates
under SSP3 7.0 into a first NIFA year of 2033.

Table 1 contains implied projected first-IFA and first-NIFA years. The univariate projected SIA first-IFA year is 2039
and the corresponding bivariate constrained projected first-IFA years are 2044, 2039, and 2028, depending on whether
SIA is modeled jointly with SIE, SIT , or SIV , respectively. The range of univariate projected first-IFA years is 2045–2026 =

19 years, and the constrained bivariate range is 2044–2028 = 16 years. Table 1 also reports projected SIA first-NIFA years.
The univariate projected SIA first-NIFA year is 2033. This date is close to the constrained bivariate projected SIA + SIT
first-NIFA year and ranges between those for SIA + SIV and SIA + SIE, respectively. The range of the projected first-NIFA
years is 2037–2024 = 13 years. Across all univariate and bivariate specifications, the average SIA first-NIFA data falls
between 2031 (average bivariate) and 2033 (univariate), so the occurrence of a nearly ice-free Arctic is clearly projected
to occur fairly soon.

Finally, as we will describe in detail below, our first-IFA and first-NIFA dates are robust to use of low, medium, or
high concentration growth scenarios. We have emphasized the medium (SSP3 7.0) scenario as a plausible baseline, but
low (SSP2 4.5) and high (SSP5 8.5) scenarios provide similar dates, because first NIFA occurs relatively rapidly before the
carbon levels in the various scenarios can diverge. This can be seen in Fig. 1, where the horizontal CO2 concentration line
at 464 ppm cuts the medium and high SSP schedules at nearly-identical times, and the low SSP schedule just a few years
later. That is, our results indicate that global adoption of a somewhat lower emissions path would likely delay the arrival
of a seasonally ice-free Arctic by only a few years.

13 The interval forecasts are obtained from 1000 bootstrap simulations, and they account for both parameter estimation uncertainty and disturbance
uncertainty. For details, see Appendix B.
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Fig. 3. September Arctic sea-ice indicators:
Estimated linear carbon trends in ice-time space under SSP3 7.0.
otes: Each panel displays a pair of sea-ice indicators graphed against time. We show extent in blue (measured in 106 km2), area in black (measured
n 106 km2), thickness in red (measured in m), and volume in green (measured in 106 km3). In the univariate column, we show linear carbon-trend
its and forecasts based on Eq. (3)) converted from ice-carbon space to ice-time space under SSP3 7.0. In the bivariate column, we show linear
arbon-trend regression fits and forecasts constrained to reach zero simultaneously, based on Eq. (4) converted from ice-carbon space to ice-time
pace under SSP3 7.0. The underlying CO2 measure is atmospheric concentration, measured in ppm. The historical sample period (unshaded) is
979–2021, and the projection intervals obtained by simulation have 90% coverage. See Appendix B for details.

. Quadratic time-trend models, fits, and forecasts

In the previous section, we focused on the connection between higher atmospheric CO2 concentration and melting
rctic ice, implicitly recognizing that higher greenhouse gas concentrations raise global surface temperatures and lead
o melting ice. Remarkably, a simple linear regression appeared adequate, based on the past forty years, for forecasting
O2C at first IFA and NIFA. We then used a leading SSP concentration scenario to convert the forecasted sea-ice paths
rom ice-carbon space to ice-time space. That is, we ultimately forecasted the path and pattern of SIA diminution over
10



F.X. Diebold, G.D. Rudebusch, M. Göbel et al. Journal of Econometrics 236 (2023) 105479

r

time, and in particular, the years of first IFA and first NIFA. The nonlinear SSP path converted the linear carbon trend into
a nonlinear implied time trend, decreasing at an increasing rate.

As a first and major robustness check, we now compare the nonlinear time trends obtained from the ice-carbon
elationship to deterministic polynomial trends fit directly to SIA, as in Diebold and Rudebusch (2022). In particular, we
allow for the relevant ice-time nonlinearity by allowing for quadratic time effects. In the univariate approach, we use

SIAt = ax + bxTIMEt + cxTIME2
t + εx

t (5)

where SIAt is sea-ice area, TIME is a time trend dummy, and ϵt represents deviations from trend. Similarly, in the bivariate
approach we use

xt = ax + bxTIMEt + cxTIME2
t + εx

t

yt = ay + byTIMEt + cyTIME2
t + ε

y
t ,

where xt is SIAt and yt is one of the other sea-ice indicators (SIEt , SITt , SIVt ). Linearity of course emerges as a special
case.

In our flagship constrained bivariate approach, we move to the equivalent root form of the quadratic system,

xt = (αx
− βx TIMEt ) (1 − γ x TIMEt ) + εx

t (6)

yt = (αy
− βyTIMEt ) (1 − γ y TIMEt ) + ε

y
t ,

where the roots of the x trend are 1/γ x and αx/βx, and the roots of the y trend are 1/γ y and αy/βy. Imposing the common
first-IFA constraint (i.e., both trends reach zero simultaneously) amounts to constraining the two quadratics to have a
common root, γ x

= γ y
= γ , which can immediately be done in a joint estimation of the two quadratic trends.14

The fitted direct quadratic time trends are shown in Fig. 4. The point forecast paths are generally similar to those of the
carbon-implied time trends in Fig. 3. The interval forecast paths are wider, however, than for carbon-implied time trends.
This is to be expected because the carbon-implied time trends of Fig. 3 assume the amount of curvature via an assumed
SSP path on which they condition, whereas the direct time trends of Fig. 4 estimate the curvature, which is challenging. The
extra parameter estimation uncertainty then translates into wider projection intervals. Additionally, note that only part
of a time trend is constrained by imposing identical IFA times (one root is left free), and, as a result, different indicators
approach IFA at different speeds. The different curvatures produce different asymmetries in the IFA intervals, with flatter
trends (like SIA) promoting asymmetry and steeper trends (like SIV ) promoting symmetry.

Put differently, the carbon-implied trends provide forecasts conditional on a linear carbon-trend model and a particular
assumed SSP scenario, whereas the directly-fitted quadratic time trends do not, instead (implicitly) conditioning simply
on continued ‘‘business as usual’’. Neither approach is necessarily ‘‘better’’ than the other, and indeed they both address
the same question (‘‘What is the likely future path of Arctic sea ice?’’), but the perspective and methods used to answer the
question differ across the approaches. Given the common question but different approaches to answering it, it is certainly
of interest to compare the answers, and reassuring to see that they cohere closely under a leading carbon scenario.

Parameter estimates for both the unconstrained univariate and constrained bivariate direct quadratic trends are highly
statistically significant, and all R2’s are above 0.80. The key bivariate projected first-NIFA years are 2043, 2037, and 2036,
for SIA+ SIE, SIA+ SIT , and SIA+ SIV , respectively. The projected first-NIFA year range is 2043–2036 = 7 years. The mean
projected first-NIFA year is 2039, about 8 years after NIFA projected by the carbon-trends estimation.

All told, the point forecasts of first-NIFA years from the carbon-trend models and the direct time-trend models agree
quite closely, in terms of NIFA arriving very soon, but the carbon-trend models all feature somewhat earlier NIFA. We
now proceed to provide a more complete characterization of the uncertainty surrounding the first-NIFA point forecasts,
via a full accounting of first-NIFA probability distributions.

5. Probabilistic assessment of sea-ice disappearance

Here we maintain our focus on first-NIFA years, but we build up approximations to their full probability distributions.
Unlike our earlier first-NIFA point projections, which are based simply on extrapolated deterministic trends, here we
account for random variation, which lets us learn not only about central tendencies of the first-NIFA distributions (mean,
median, mode), but also other moments and related statistics (standard deviation, skewness, kurtosis, left- and right-tail
percentiles, etc.)

Results appear in Table 2, based on bivariate carbon-trend models (for concentration scenarios SSP5 8.5, SSP3 7.0, SSP2
4.5, and SSP1 2.6) and direct time-trend models. The first three columns report the mean, median, and mode measures of
central tendency of the first-NIFA year distributions. Regardless of carbon-trend vs. direct time trend estimation, or the
specific SSP scenario (high, medium, low) used with the carbon trends, or the additional indicator blended with SIA, it is
clear that NIFA will arrive relatively soon, consistent with our first-NIFA projections based on deterministic extrapolations.

14 That is, in the joint regression, ai = αi , bi = −β i
− αiγ , and c i = β iγ , for i = x, y.
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Fig. 4. September Arctic sea-ice indicators:
Estimated quadratic time trends.
Notes: We show extent in blue (measured in 106 km2), area in black (measured in 106 km2), thickness in red (measured in m), and volume in green
measured in 106 km3). In the univariate column, we show direct quadratic time-trend regression fits and forecasts, based on Eq. (5). In the bivariate
olumn, we show direct quadratic time-trend regression fits and forecasts constrained to reach zero simultaneously, based on Eq. (6). The historical
ample period (unshaded) is 1979–2021, and the projection intervals obtained by simulation have 90% coverage. See Appendix B for details.

he median NIFA date across the 15 median estimates in column 2 is 2034. Only the very optimistic ‘‘net zero by 2050’’
SP1 2.6 scenario delivers an appreciable delay of a first NIFA.
The central tendencies of the distributions of NIFA years in Table 2 are generally a bit earlier than the corresponding

ears in Table 1. For example, for the leading baseline case, carbon trend SIA+SIT using the mid-range concentration
cenario SSP3 7.0, the distribution median is 2031, a bit earlier than the 2033 reported in Table 1. The slightly earlier
entral tendencies of NIFA arrival in Table 3 occur because, when simulating sample pathways, the addition of stochastic
hocks to a declining deterministic trend, particularly one concave to the origin (such as ours), might shorten the time
ecessary to achieve a given threshold. The random variation raises the possibility of a transitory fall below the threshold
12
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Table 2
September arctic sea-ice indicators:
Probability distributions of SIA first september NIFA years.

Mean Median Mode Std Skew Kurt 5% 20% 80% 95%

SSP5 8.5
SIA+SIE 2034 2034 2035 3.20 −0.24 3.03 2028 2031 2036 2039
SIA+SIT 2030 2031 2031 2.33 −0.53 3.10 2026 2028 2032 2034
SIA+SIV 2024 2024 2023 1.60 0.68 3.16 2022 2023 2025 2027

SSP3 7.0
SIA+SIE 2034 2035 2035 3.62 −0.11 2.88 2028 2031 2037 2040
SIA+SIT 2031 2031 2031 2.46 −0.40 3.08 2026 2029 2033 2034
SIA+SIV 2024 2024 2023 1.63 0.67 3.14 2022 2023 2025 2027

SSP2 4.5
SIA+SIE 2039 2039 2040 4.98 −0.01 2.76 2031 2035 2043 2047
SIA+SIT 2034 2034 2035 3.33 −0.33 2.91 2028 2031 2037 2039
SIA+SIV 2025 2025 2024 2.13 0.64 3.23 2022 2023 2027 2029

SSP1 2.6
SIA+SIE 2049 2046 2094 14.22 1.48 5.26 2032 2038 2057 2083
SIA+SIT 2038 2038 2040 5.68 0.37 3.70 2029 2033 2042 2047
SIA+SIV 2025 2025 2025 2.44 0.68 3.35 2022 2023 2028 2030

Time trend
SIA+SIE 2039 2038 2038 5.49 0.53 3.57 2030 2034 2043 2048
SIA+SIT 2034 2034 2034 4.16 0.46 3.80 2028 2031 2038 2041
SIA+SIV 2033 2034 2035 5.42 0.07 2.36 2025 2028 2038 2042

Notes: We show summary statistics for distributions of first NIFA years for linear carbon- and quadratic time-trend models. Std is standard deviation,
Skew is skewness, Kurt is kurtosis, and xx% is the xx-th percentile. All years are rounded to the nearest integer. For SIA+SIE under SSP1 2.6, SIA
ever reaches NIFA in 4.44% of the simulations, in which case we impute the last year in which we observe NIFA for SIA, which is 2094.

ven before the deterministic trend achieves it on a sustained basis.15 According to the simulation, stochastic shocks are
ore likely to result in early NIFA years (79.85%) than later NIFA years (9.51%). The discrepancy between the timing of the
eterministic first NIFA year and the mean (or median or mode) of the stochastic first NIFA year depends on the curvature
f the trend and the variance of the shocks. A steeper slope, a more concave trend curve, or a smaller error variance will
educe the timing difference.

The last two columns of Table 2 characterize the right tails of the NIFA arrival distributions. Consider again the baseline
ase: carbon trend SIA+SIT with medium concentration scenario SSP3 7.0. The ‘‘80%’’ column of Table 2 reports an eighty
ercent chance of first NIFA by 2033. Even the most extreme late arrival (moving up and down the 80% column) is fairly
oon (2057). Returning to the baseline case but increasing the confidence level from 80% all the way to 95% increases the
IFA arrival year by only one year – from 2033 to 2034. Alternatively, maintaining the 80% confidence level but moving
o the optimistic lower concentration scenario SSP2 4.5 again postpones NIFA arrival by (only) five years.

. Measuring CO2 as cumulative emissions

In Section 4, we checked the robustness of our carbon-trend results by comparing them to directly fitted time trends.
n this section, we implement a second major robustness check by providing and comparing carbon-trend results when
arbon is measured as cumulative CO2 emissions since 1850 (CO2E) rather than atmospheric CO2 concentration (CO2C).16
The emissions-based carbon-trend results are quite similar to the earlier results based on concentration. A linear carbon

rend for emissions appears to fit well for each measure of Arctic sea ice. The projected cumulative emissions at first SIA
FA is generally on the order of 2842 to 4179 gt. The corresponding CO2E for first NIFA (univariate SIA) is 3275 gt, which
hen compared to the current cumulative emissions – projected for 2021 under SSP3 7.0 – of about 2499 gt puts the
arbon budget at around 776 gt for reaching first NIFA.
The implied projected first-IFA and first-NIFA years from the emissions-based carbon-trend regressions using the SSP3

.0 scenario are also quite similar to the earlier results based on concentration. The univariate projected SIA first-IFA year
s 2043, and the corresponding bivariate constrained projected first-IFA years are 2049, 2043, and 2031, depending on
hether SIA is modeled jointly with SIE, SIT , or SIV , respectively. These are several years later than the corresponding

first-IFA years obtained using atmospheric concentration.

15 Consider, for example, a gentle deterministic trend that slowly approaches zero from above. This series will continue to run just above zero for
a while before hitting zero. Adding random shocks to that trend, on the other hand, will almost certainly push the series below zero considerably
sooner. We call this the ‘‘principle of stochastic precedence’’.
16 The emissions data are based on Rogelj et al. (2021) and served as input to the IPCC AR6 report (Allan et al., 2022). The emissions-based
regressions use the historical CO2 data from 1979 to 2019 and two additional years of data from the SSP3 7.0 scenario to complete the sample. See
Appendix A for details.
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Table 3
September arctic Sea-Ice indicators:
probability distributions of SIA first september NIFA years CO2 measured as cumulative emissions.

Mean Median Mode Std Skew Kurt 5% 20% 80% 95%

SSP5 8.5
SIA+SIE 2037 2037 2038 3.89 −0.21 2.80 2030 2034 2040 2043
SIA+SIT 2033 2033 2034 2.80 −0.43 3.00 2028 2031 2035 2037
SIA+SIV 2025 2025 2024 2.00 0.55 2.92 2022 2023 2027 2028

SSP3 7.0
SIA+SIE 2038 2038 2039 4.30 −0.09 2.77 2030 2034 2041 2044
SIA+SIT 2033 2033 2034 2.98 −0.37 2.92 2028 2031 2036 2038
SIA+SIV 2025 2025 2024 2.01 0.59 3.00 2022 2023 2027 2028

SSP2 4.5
SIA+SIE 2041 2041 2042 5.34 0.03 2.80 2032 2036 2045 2049
SIA+SIT 2035 2035 2036 3.57 −0.26 2.78 2029 2032 2038 2040
SIA+SIV 2025 2025 2025 2.25 0.62 3.19 2022 2023 2027 2029

SSP1 2.6
SIA+SIE 2046 2045 2045 9.35 1.07 5.88 2033 2038 2053 2062
SIA+SIT 2038 2038 2040 4.92 0.02 2.76 2029 2033 2042 2046
SIA+SIV 2026 2025 2025 2.44 0.68 3.29 2022 2023 2028 2030

Time trend
SIA+SIE 2039 2038 2038 5.49 0.53 3.57 2030 2034 2043 2048
SIA+SIT 2034 2034 2034 4.16 0.46 3.80 2028 2031 2038 2041
SIA+SIV 2033 2034 2035 5.42 0.07 2.36 2025 2028 2038 2042

Notes: We show summary statistics for distributions of first NIFA years for linear carbon-trend and quadratic time-trend constrained bivariate
models. Std is standard deviation, Skew is skewness, Kurt is kurtosis, and xx% is the xx-th percentile. All years are rounded to the nearest integer.
For SIA+SIE under SSP1 2.6, SIA never reaches NIFA in 0.16% of the simulations, in which case we impute the last year in which we observe NIFA
for SIA, which is 2100.

The implied emissions-based first-NIFA probability distributions appear in Table 3. They are nearly identical in shape
to the earlier-reported concentration-based first-NIFA distributions, with one difference: the emissions-based distribution
is shifted slightly rightward relative to the concentration-based distribution (i.e., shifted toward later first-NIFA years).
Using SSP3 7.0 and SIA+SIT , for example, produces an emissions-based median first NIFA of 2033, for example, in contrast
to our earlier concentration-based 2031. The right-shifting of the emissions-based distribution makes its left tail thinner,
so its 80th and 95th percentiles increase by even more relative to the concentration-based distribution. Moving from
concentration to emissions increases the 80th percentile from 2033 to 2036 (again using SSP3 7.0 and SIA+SIT ) and
increases the 95th percentile from 2034 to 2038.

7. Concluding remarks

We have constructed projections of September Arctic sea ice using a variety of specifications. We prefer bivariate
rather than univariate projections, because they enlarge the underlying information set in two ways. First, the bivariate
projections blend the information in the history of SIA with that in the histories of other sea-ice indicators, such as SIE,
SIT , and SIV , which may improve projection accuracy. Second, they provide regularization by enabling us to constrain
first IFA to coincide across sea-ice indicators, thereby imposing appropriate geophysical constraints on otherwise flexible
statistical models.

Importantly, our analysis produces full probability distribution projections of Arctic sea ice and, in particular, distribu-
tions of first-NIFA years based on constrained bivariate models. Our empirical results reconcile linear carbon trends with
quadratic time trends and provide constrained multivariate support for an early probabilistic September disappearance
of sea ice. Notz and Stroeve (2016) and others have also considered carbon regressions of the kind we use, but again, we
generalize them to a multivariate setting, impose equal-IFA constraints, and construct density forecasts.

Using atmospheric CO2 concentration data, the median of our preferred first-NIFA distribution is 2031, with 80%
probability by 2033 and 95% probability by 2034. Using cumulative CO2 emissions data, the median is 2033, with 80%
probability by 2036 and 95% probability by 2038. Therefore, it is very likely that the September Arctic will be nearly
ice-free at some time before the middle of the next decade.

Our results are largely robust to the modeling strategy (univariate or multivariate, carbon trend or direct time trend),
the sea-ice indicator variable blended with SIA (SIE, SIT , SIV ), concentration path assumptions (high SSP5 8.5, medium
SSP3 7.0, low SSP2 4.5), CO2 measures (atmospheric concentration, cumulative emissions), and statistical confidence levels
(80%, 95%). Note in particular that although both this paper and Diebold and Rudebusch (2022) agree that Arctic sea ice will
disappear on a seasonal basis within a couple of decades, the two papers use very different information sets and methods,
and the fact that they agree is itself an important result. Hence, unless we somehow manage to follow something like the
extremely low SSP1 2.6 concentration path, there is no escaping the sharp bottom line: The Arctic will become seasonally
ice free very soon – most likely by the mid- to late 2030’s.
14
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In closing, we note that although this paper is about refining statistical sea-ice projections, not about comparing
tatistical and climate-model projections (unlike our earlier paper, Diebold and Rudebusch, 2022), it nevertheless provides
ndirect evidence supporting the speculations of, for example, Stroeve et al. (2007) and Stroeve et al. (2012) that the slow
ecline in Arctic sea ice projected by climate models reflects an underestimation of the effects of GHGs. Our forecasts
re indeed generally quite different from those of typical climate models; we predict an earlier first NIFA (in the 2030’s),
hereas the latest CMIP6 coupled-climate models tend to obtain first NIFA around mid-century. Hence, as regards future
esearch, it will be of interest to assess whether the linear relationship between Arctic sea ice and carbon dioxide, which
e have documented in the observational record and used to make probabilistic assessments of NIFA arrival, is also
resent in simulated paths from large-scale dynamical climate models. If so, it will be of great interest to assess whether
he ‘‘b’’ parameters (as defined by our Eq. (3)) embedded in various climate models are of sufficient magnitude to achieve
onsistency with the rapid observed historical Arctic sea-ice decline, and our projected continued rapid decline. Diebold
nd Rudebusch (2023) take initial steps in that direction.
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ppendix A. Data sources and details

.1. Measures of arctic sea ice

For the sample from 1979 to 2021, we consider four measures of September Arctic sea ice: area, extent, thickness, and
olume.

.1.1. Area and extent
Area data are from the National Snow and Ice Data Center (Sea Ice Index monthly dataset, Version 3, Dataset ID G02135,

ttps://nsidc.org/data/G02135/versions/3). Area is from 30.98N, measured in 106 km2. The satellites miss the ‘‘pole hole’’,
nd the published SIA data exclude it, implicitly assuming that the pole hole has zero ice (c=0). A better approximation
s to assume that the pole hole has full ice (c=1). Hence we first fill the pole hole by adding 1.19 × 106 km2 to SIA from
ample start through July 1987, 0.31 × 106 km2 from September 1987 through December 2007, and 0.029 × 106 km2

rom January 2008 to present.17
Extent data are from the National Snow and Ice Data Center (Sea Ice Index monthly dataset, Version 3, Dataset ID

02135, https://nsidc.org/data/G02135/versions/3). Extent is from 30.98N, measured in 106 km2.

.1.2. Thickness and volume
Thickness and volume date are from PIOMAS at the Polar Science Center, http://psc.apl.uw.edu/research/projects/

rctic-sea-ice-volume-anomaly/data/. Thickness is from 49N, measured in m, where greater than 0.15 m. Volume is
rom 49N, measured in 103 km3. Volume data are published monthly. Thickness data are published on daily (file
IOMAS.thick.daily.1979.2020.Current.v2.1-2.dat), and we transform the daily data into monthly averages.

.2. CO2 measures

The CO2 measures are annual September atmospheric concentration and cumulative emissions.

.2.1. Concentration
The historical (1979–2021) CO2 atmospheric concentration data (in parts per million, PPM) are taken from NOAA Global

onitoring Laboratory18 CO2C is measured at Mauna Loa Observatory, Hawaii.
Scenario values for the period 2022–2100 are taken from the SSP Public Database (Version 2.0) (https://tntcat.

iasa.ac.at/SspDb). The individual scenarios are retrieved from the IAM Scenarios spreadsheet as follows: Data for the
SP1 2.6 scenario are based on the IMAGE - SSP1-26 model with variable ID Diagnostics|MAGICC6|Concentration|CO2 for
egion World. Data for the SSP2 4.5 scenario are based on the MESSAGE-GLOBIOM - SSP2-45 model with variable ID
iagnostics|MAGICC6|Concentration|CO2 for region World. Data for the SSP3 7.0 scenario are based on the AIM/CGE - SSP3-
aseline model with variable ID Diagnostics|MAGICC6|Concentration|CO2 for region World. Data for the SSP5 8.5 scenario
re based on the REMIND-MAGPIE - SSP5-Baseline model with variable ID Diagnostics|MAGICC6|Concentration|CO2 for region
orld. All four scenarios are composed of eleven data points between 2005 and 2100. Missing data points for the years
022–2100 were filled by linear interpolation.

17 See the NSIDC Sea Ice Index Version 3 User Guide, https://nsidc.org/data/G02135/versions/3, p. 17.
18 See: https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_mm_mlo.txt. The data file was created on 11/05/2021 at 10:28:56. The data were
retrieved on 11/23/2021. Our calculations are based on the de-seasonalized data column.
15
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A.2.2. Emissions
Cumulative CO2 emissions data are taken from Rogelj et al. (2021) and the corresponding IPCC report (Allan et al.,

2022). The actual dataset (Rogelj et al., 2021) is at https://data.ceda.ac.uk/badc/ar6_wg1/data/spm/spm_10/v20210809.
From the latter, we use the following files:

1. Top_panel_HISTORY.csv,
2. Top_panel_SSP1-26.csv,
3. Top_panel_SSP2-45.csv,
4. Top_panel_SSP3-70.csv,
5. Top_panel_SSP5-85.csv.

We merge annual historical cumulative emissions for the period 1850–2019 with data from each of the four scenarios
(SSP1 2.6, SSP2 4.5, SSP3 7.0, SSP5 8.5) from 2020 until 2050. Since the time-series end in 2050, we merge this data with
the corresponding series from the SSP Public Database (Version 2.0) (https://tntcat.iiasa.ac.at/SspDb) to expand all four
series across the second half of the century from 2051 to 2100. The individual scenarios are retrieved from the CMIP6
missions spreadsheet as follows: Data for the SSP1 2.6 scenario are based on the IMAGE - SSP1-26 model for region World
ata for the SSP2 4.5 scenario are based on the MESSAGE-GLOBIOM - SSP2-45 model for region World. Data for the SSP3
.0 scenario are based on the AIM/CGE - SSP3-70 (Baseline) model for region World. Data for the SSP5 8.5 scenario are
ased on the REMIND-MAGPIE - SSP5-85 (Baseline) model for region World. This leaves us with four annual time series
850–2100, with a common historical part 1850–2019.

ppendix B. Details of bootstrap simulation

Our bivariate bootstrap projection interval simulation procedure, of which our univariate procedure is a special case,
roceeds as follows at bootstrap replication i. First we estimate the model and collect residuals. Second, we draw pairs
f those residuals, to preserve their cross-correlation, and we add them back to the in-sample fitted values. Third,
e re-estimate the model on this synthetic data and use the re-estimated model to project out-of-sample. Finally, we
raw pairs of residuals and add them to the forecasted paths to get the simulated path realizations. We repeat this for
= 1, 2, . . . , 1000. We then sort the simulated path values at each date and obtain the 90% intervals shown in Figs. 3 and
, with left and right endpoints given by the fifth and ninety-fifth percentiles, respectively, of the simulated path values.
Our bivariate bootstrap first NIFA simulation proceeds identically, with one extra step. At the end, once the simulated

ath realizations are in hand, we calculate the corresponding simulated first NIFA realizations, NIFAi, i = 1, 2, . . . , 1000.
e then obtain the first NIFA densities shown in Figs. 3 and 4 by applying a nonparametric kernel density estimator to
IFAi, i = 1, 2, . . . , 1000.
One might naturally wonder whether our bootstrap should account for dependence, which it does not. Fortunately,

owever, the residuals in our annual models of September Arctic sea ice display negligible dependence. Indeed ρ(1) = 0.06
or both linear carbon-trend residuals and quadratic time-trend residuals. (The key is to recognize that although for
bvious reasons September shocks are likely to be highly correlated with those of earlier or later months like August
r October, they are much less likely to be highly correlated with those of earlier or later Septembers.)
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