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We propose methods for constructing regularized mixtures of density forecasts. We
explore a variety of objectives and regularization penalties, and we use them in a
substantive exploration of Eurozone inflation and real interest rate density forecasts. All
individual inflation forecasters (even the ex post best forecaster) are outperformed by
our regularized mixtures. From the Great Recession onward, the optimal regularization
tends to move density forecasts’ probability mass from the centers to the tails, correcting
for overconfidence.
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1. Introduction

Forecast combination for a series y involves transforming a set of forecasts of y, f = (f1, . . . , fK )′, into a ‘‘combined", and
hopefully superior, forecast c(f ). Most of the huge literature focuses on linear combinations of univariate point forecasts,
in which case we can write the combined forecast as c(f ; ω) = ω′f , for combining weight vector ω = (ω1, . . . , ωK )′.1 We
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ypically proceed under quadratic loss, choosing the weights to minimize the sum of squared combined forecast errors
SSE),

SSE(c(f ; ω), y) =

T∑
t=1

(
yt − ω′ft

)2
,

where the sample of forecasts and realizations covers t = 1, . . . , T . That is, we simply run the least-squares regression
y → f1, . . . , fK , so that2

ω̂ = argmin
ω

(
SSE(c(f ; ω), y)

)
.

This is the classic Bates and Granger (1969) and Granger and Ramanathan (1984) solution.
Recent point forecast combination literature such as Diebold and Shin (2019), however, focuses instead on weights

that solve a penalized estimation problem,

ω̂ = argmin
ω

(
Objective(c(f ; ω), y) + λ · Penalty(ω)

)
, (1)

where the Lagrange multiplier λ governs the strength of the penalty. Maintaining quadratic loss we have

ω̂ = argmin
ω

(
SSE(c(f ; ω), y) + λ · Penalty(ω)

)
.

If λ = 0 we obviously obtain the Bates–Granger–Ramanathan solution, but the recent literature focuses on λ > 0. This
roduces regularization, which can be highly valuable in the finite samples often of practical relevance, particularly for
conomic survey forecasts where the sample size T is often very small relative to the number of forecasters K . The precise
orm of the penalty determines the precise form of regularization, but in general it involves selection and/or shrinkage in
irections guided by the penalty. For example, the famous LASSO penalty of Tibshirani (1996), Penalty(ω) =

∑K
k=1 |ωk|,

nduces both selection to 0 and shrinkage toward 0.
In this paper we extend the idea of regularized forecast combination to the density forecast case. Density forecasting

s important because predictive densities are complete probabilistic statements, which are always desirable, sometimes
nvaluable, and increasingly available. Density forecasts provide much more information, for example, than interval
orecasts, which in turn provide more information than point forecasts.3

We work with ‘‘linear opinion pools" (mixtures), as in the key contributions of Hall and Mitchell (2007), Geweke
nd Amisano (2011) and Amisano and Geweke (2017), but we consider a variety of estimation objectives, and most
mportantly, we introduce regularization constraints. Our regularized density forecast combinations are regularized
ixtures, and important subtleties arise in constructing appropriate penalties for mixture regularization. In this paper
e confront this situation and propose several solutions.
Our methods are related to earlier and current work in both the econometrics and statistics literatures. A basic

nsight underlying our work and much of the recent literature is that Bayesian model averaging (BMA) as traditionally
mplemented is unattractive for combining density forecasts from misspecified models, because it fails to acknowledge
isspecification (Diebold, 1991). That is, it assumes implicitly or explicitly that one of the models is ‘‘true", in which case

he posterior predictive density asymptotically puts all probability on that model, so that BMA actually fails to average.
nstead, once we acknowledge that all models are misspecified, we want a method capable of delivering a defensible and
iversified portfolio (weighted average) of models, even asymptotically.
In one strand of econometrics literature this led (Hall and Mitchell, 2007; Brodie et al., 2009; Geweke and Amisano,

011), and Amisano and Geweke (2017) inter alia to move away from BMA, working instead with linear opinion pools
hat optimize the log score. In a different strand of econometrics literature that also moved away from BMA, it led (Billio
t al., 2013) to treat density forecast combination as a nonlinear filtering problem, potentially with time-varying mixture
eights. Parallel developments in the statistics literature now acknowledge misspecification, distinguishing between

‘M-closed" vs. ‘‘M-complete" situations, and achieve diversified density forecast mixtures by ‘‘stacking" predictive
ensities (Yao et al., 2018), or via ‘‘dynamic Bayesian predictive synthesis" (McAlinn and West, 2019).4
We pick up from there and proceed as follows. In Section 2 we discuss objectives for mixture regularization, that is,

arious choices and issues associated with Objective(c(f ; ω), y). Then in Section 3 we treat choices and issues associated
ith Penalty(ω), starting with the key unit simplex penalty, which we maintain throughout, and then introducing hybrid
enalties that blend the simplex penalty with others. In Section 4 we present Monte Carlo evidence on the efficacy of
ur procedures. In Section 5 we present empirical results for European Central Bank (ECB) survey density forecasts of
urozone inflation and real interest rates. We conclude in Section 6.

2 We assume unbiased forecasts, so there is no need for an intercept.
3 The evaluation of interval forecasts, moreover, is fundamentally problematic, as detailed in recent work by Askanazi et al. (2018) and Brehmer

and Gneiting (2021).
4 ‘‘M-closed" refers to a situation where the true model is among those being combined (but of course the econometrician does not know which

it is) and ‘‘M-complete" refers to a situation where a true model exists but is not among those being combined, thereby formalizing the situations
described in Diebold (1991). For additional discussion and nuances, see Yao et al. (2018).
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. Objectives

Consider a discrete density (histogram) forecast for a scalar variable y, which takes values in m = 1, . . . ,M bins, or
ategories.5 Denote the forecast by p = (p1, . . . , pM )′. We start with density forecast ‘‘scores" for a single forecaster in a
ingle period in Section 2.1–2.3. We then extend the discussion to multiple forecasters and periods in Section 2.4, and we
rovide additional discussion in Section 2.5.

.1. Log score

The log score (Good, 1952; Winkler and Murphy, 1968) is

L(p, y) = − log

(
M∑

m=1

pm 1(y ∈ bm)

)
, (2)

here pm is the probability assigned to bin bm, and 1(y ∈ bm) = 1 if y ∈ bm and 0 otherwise.
Ranking density forecasts by L, where smaller is better, reflects a preference for ‘‘small surprises". In a frequentist

interpretation, L is just the (negative of the) log predictive density evaluated at the realization; that is, it is the (negative
of the) predictive log likelihood. In a Bayesian interpretation, L is, desirably, a strictly proper scoring rule.6

2.2. Brier score

The Brier score (Brier, 1950) is:

B(p, y) =
1
M

M∑
m=1

(pm − 1(y ∈ bm))2 .

The Brier score generalizes the idea of quadratic loss to density forecasts. Indeed B is effectively the same as the so-called
‘‘quadratic score",

Q (p, y) = −2

(
M∑

m=1

pm 1(y ∈ bm)

)
+

(
M∑

m=1

p2m

)
, (3)

as noted by Czado et al. (2009). Rankings by Q must match rankings by B, because one is a positive monotonic
transformation of the other. Both B and Q are strictly proper scoring rules under weak conditions.

2.3. Ranked score

The ranked score (Epstein, 1969) is,

R(p, y) =

M∑
m=1

(Pm − 1(y ≤ bm+))2 ,

where Pm =
∑m

h=1 p(bh) is the cdf of the density forecast p, defined on bins bm = [bm−, bm+], m = 1, . . . ,M . R effectively
proceeds by comparing realizations to the cdf forecast rather than the density forecast. R is strictly proper under weak
conditions.

2.4. Multiple forecasters and time periods

Let us now modify the notation to identify the specific forecaster, k. Thus far there has been no need, as we have
considered just one forecaster, but shortly we will want to consider a set of forecasters, k = 1, . . . , K . This is just a
notational change, inserting ‘‘k" subscripts in the relevant places. In addition let us write the scores for a set of periods,
t = 1, . . . , T , rather than for just one period. This just involves summing over time.

We have:

Lk(pk, y) =

T∑
t=1

(
− log

(
M∑

m=1

pmkt 1(yt ∈ bm)

))
, k = 1, . . . , K

5 We focus largely on the discrete case, because it is the one of practical relevance for survey forecasts that we eventually analyze. Parallel
developments of course exist for the continuous case.
6 On scoring rules see Gneiting and Raftery (2007) and the references therein.
3



F.X. Diebold, M. Shin and B. Zhang Journal of Econometrics xxx (xxxx) xxx

(

e

3

w

Bk(pk, y) =

T∑
t=1

(
1
M

M∑
m=1

(
pmkt − 1(yt ∈ bm)

)2)
, k = 1, . . . , K

Rk(pk, y) =

T∑
t=1

(
M∑

m=1

(
Pmkt − 1(yt ≤ bm+)

)2)
, k = 1, . . . , K ,

where pk = (pk1, . . . , pkT ) is the sequence of density forecasts over time for forecaster k, and y = (y1, . . . , yT ) is the
sequence of realizations over time.

2.5. Discussion

Thus far we have implicitly emphasized the differences among the L, B, and R scores, but there are also many
similarities.

B, for example, might appear linked to Gaussian environments, because it is a mean-squared error analog, unlike L,
which is based directly on the likelihood and therefore valid under great generality. But it is not; indeed its ‘‘Q version"
(3),

Q = −2L +

(
M∑

m=1

p2m

)
,

reveals the intimate relationship between B and L. Moreover, B remains a strictly proper scoring rule regardless of
distributional environment.

Now consider R. First, it is interesting to note that R is a generalization of absolute-error loss to density forecasts, just
as B is a generalization of squared-error loss to density forecasts. In particular, Gneiting and Raftery (2007) show that R
is driven by Ep|Y − y|:

R(p, y) = Ep|Y − y| −
1
2
Ep|Y − Y ′

|,

where Y and Y ′ are independent copies of a random variable with distribution p.
Second, R’s generalization of absolute-error loss (MAE) to density forecasts also makes it a generalization of the (Diebold

and Shin, 2017) stochastic error distance (SED), because MAE and SED rankings must agree, as shown by Diebold and Shin
2017). Moreover, and interestingly, SED is based on cdf divergences, just as is R.

Finally, although R might appear linked to a particular (Laplace) distributional environment, because it is an absolute-
rror analog, it is not. R is a strictly proper scoring rule regardless of distributional environment.

. Penalties

Our goal is to produce mixtures of density forecasts,

c(ω) =

K∑
k=1

ωkpk,

ith regularized mixture weights ω = (ω1, . . . , ωK )′. We score mixtures in the same way as we scored individual density
forecasts. The only difference is that we now score the mixture, c(ω), rather than an individual forecast, pk.

Thus far we have focused on appropriate objectives for regularized mixture weight estimation, objective(c(ω), y),
and we emphasized use of strictly proper density forecast scoring rules. Now we consider appropriate constraints for
regularized mixture weight estimation, penalty(ω). As we shall see, imposition of the unit simplex constraint (i.e., imposing
that mixture weights be non-negative and sum to one: ωi≥0 ∀i and

∑K
i=1 ωi = 1) provides essential regularization. In

addition, however, simultaneous imposition of other regularization constraints may also be helpful.

3.1. Simplex

The unit simplex constraint has two parts: non-negativity and sum-to-one. For point forecasts we can relax both parts
and potentially achieve better combined point-forecasting performance, as recognized by Granger and Ramanathan (1984)
and done routinely ever since. As first recognized in the pioneering work of Brodie et al. (2009), it turns out that density
forecasts are different: When combining density forecasts it is crucial to impose (both parts of) the simplex constraint.

First consider non-negativity. For point forecasts, allowing negative combining weights can improve performance, in a
fashion analogous to allowing short positions in a financial asset portfolio. For density forecasts, in contrast, negative
weights are unambiguously problematic, producing pathologies even if sum-to-one holds, because negative mixture
weights can drive parts of the mixture density negative.
4
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Now consider sum-to-one. Immediately, sum-to-one is required for the mixture combination to be a valid probability
density.7 Moreover, and separately, the solution to the mixture weight estimation problem can be pathological without
imposition of sum-to-one. To see this, consider a simple example with two continuous density forecasts and a log score
objective. We have

ω̂ = arg min
ω1,ω2

(
−

T∑
t=1

log(ω1f1,t (yt ) + ω2f2,t (yt ))

)
,

where fk,t (yt ) is forecaster k’s density forecast evaluated at the realization, yt . Without the sum-to-one constraint, the
ptimal solution is not well defined: either ω1→∞ or ω2→∞ leads to the smallest possible objective function value,
ecause f1,t and f2,t are non-negative for any yt .
For all of the above reasons, we henceforth impose both the non-negativity and sum-to-one parts of the simplex

onstraint. Interestingly, moreover, their imposition is not only necessary to eliminate pathologies, but also desirable
o provide regularization. In particular, the simplex constraint clearly imposes a particular L1 ‘‘parameter budget"; it is
ffectively a special case of LASSO.
Assembling everything, the basic regularized estimator with log score objective (Geweke and Amisano, 2011; Amisano

nd Geweke, 2017) is8

argmin
ω

(
−

T∑
t=1

log

(
K∑

k=1

ωkfk,t (yt )

) )
(4)

s.t. ωk ∈ (0, 1),
K∑

k=1

ωk = 1.

The methodological question remains, however, of how to provide additional, and more flexible, regularization, as does
the substantive situation-specific empirical question of whether and where additional regularization is helpful. In the
remainder of this paper we work toward answering both questions.

3.2. Simplex+ridge

L1 simplex regularization is a special case of L1 LASSO regularization, corresponding to a specific choice of LASSO
regularization parameter. Hence we cannot introduce additional L1 regularization.

Additional regularization of some other type may nevertheless be useful for a variety of reasons. One reason is that
he sparsity promoted by the simplex constraint may not be desirable (Giannone et al., 2021), so we may want to shrink
ll K mixture weights away from 0, thereby ‘‘undoing" the selection implicit in the LASSO-style L1 penalty, allowing for
on-zero mixture weights on all forecasts. We focus in particular on introducing shrinkage toward an equally-weighted
ixture (i.e., shrinkage of all K weights toward 1/K ).
Consider, for example, introducing L2 regularization. Immediately, incorporating an L2 penalty in addition to the

implex constraint, we have9:

ω̂ = argmin
ω

⎛⎜⎜⎜⎜⎜⎝−

T∑
t=1

log

(
K∑

k=1

ωkfk,t (yt )

)
  

log score

+ λ

(
K∑

k=1

(
ωk −

1
K

)2
)

  
L2 penalty

⎞⎟⎟⎟⎟⎟⎠ (5)

s.t. ωk ∈ [0, 1],
K∑

k=1

ωk = 1.

This parallels the egalitarian ridge estimator of Diebold and Shin (2019), with an additional simplex constraint imposed.
Note that, due to the simplex constraint, the solution may discard some forecasters (setting some weights approximately
if not exactly to zero), but that situation becomes progressively less likely as λ grows, pulling the weights toward
equality.

7 See also Yao et al. (2018), who briefly discuss issues related to the imposition of convex mixture weights.
8 Other objectives may of course be used, as discussed earlier in Section 2. Note that for a histogram forecast we have fk,t (yt ) =

∑M
m=1 pmkt1(yt ∈

m).
9 For transparency we make most of our arguments using a log score objective.
5
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ω̂ = argmin
ω

⎛⎜⎜⎜⎜⎝−

T∑
t=1

log

(
K∑

k=1

ωkfk,t (yt )

)
  

log score

+ λ1

(
K∑

k=1

|ωk| − 1

)
  

L1 simplex/LASSO penalty

+ λ2

(
K∑

k=1

(
ωk −

1
K

)2
)

  
L2 ridge penalty

⎞⎟⎟⎟⎟⎠ , (6)

s.t. ωk ∈ [0, 1],
which emphasizes that simplex+ridge regularization involves a combination of L1 and L2 penalties.10 Note, however, that
we are not free to choose λ1, because the sum-to-one constraint must bind; Eqs. (5) and (6) instead coincide for ‘‘large
enough" λ1.

Eq. (6) in turn reveals that simplex+ridge regularization is closely related to the elastic net of Zou and Hastie (2005).
The elastic net penalty is

Penalty(ω) = α

K∑
k=1

|ωk|  
L1 LASSO penalty

+ (1−α)
K∑

k=1

ω2
k  

L2 ridge penalty

,

where α∈[0, 1] is a parameter, so that elastic net also involves combinations of L1 and L2 (that is, LASSO/simplex and ridge)
enalties. Elastic net is well known to work well for regularization problems with many correlated predictors, exactly the
ituation of relevance for the large sets of economic forecasts on which we focus.

.3. Simplex+Divergence

Here we move from simplex+ridge to simplex plus a general penalty based on the divergence between two discrete
robability measures. As we will see, the divergence penalty includes simplex+ridge as a special case, but it also introduces
rich variety of new possibilities. Write the estimator as

ω̂ = argmin
ω

⎛⎜⎜⎜⎜⎝−

T∑
t=1

log

(
K∑

k=1

ωkfk,t (yt )

)
  

log score

+ λD
(
ω, ω∗

)  
penalty

⎞⎟⎟⎟⎟⎠ (7)

s.t. ωk ∈ [0, 1],
K∑

k=1

ωk = 1,

where D(ω, ω∗) is a measure of divergence between w and w∗. The key insight is that once the simplex restriction is
imposed, ω can be interpreted as a discrete probability measure on {1, 2, . . . , K }. If we let ω∗ be the uniform probability
mass function with weight 1/K on each outcome, then the penalized optimization (7) shrinks the solution toward equal
weights.

Maintaining uniform ω∗ throughout, but using different divergence measures D(ω, ω∗), we obtain new regularized
estimators. For example:

1. The L2 norm,

D(ω, ω∗) =

K∑
k=1

(
ωk −

1
K

)2

,

produces the simplex plus egalitarian ridge penalty given in (5) and (6).
2. The L1 norm (total variation),

D(ω, ω∗) =

K∑
k=1

⏐⏐⏐⏐ωk −
1
K

⏐⏐⏐⏐ ,
produces a simplex plus egalitarian LASSO penalty (Diebold and Shin, 2019).

10 Eq. (6) also reveals that simplex+ridge is closely related to an additive-penalty version of partial egalitarian LASSO (Diebold and Shin, 2019),
but with the egalitarian penalty done in L2 (ridge) form rather than L1 (LASSO) form.
6
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3. Kullback–Leibler divergence (entropy) from ω to ω∗,

D(ω, ω∗) = − log K −

K∑
k=1

logωk,

produces a ‘‘simplex+entropy" penalty, −
∑K

k=1 logωk. In Appendix A we formally show that the simplex+entropy
regularized estimator,

ω̂ = argmin
ω

⎛⎜⎜⎜⎜⎝−

T∑
t=1

log

(
K∑

k=1

ωkfk,t (yt )

)
  

log score

+ λ

(
−

K∑
k=1

log(ωk)

)
  

entropy penalty

⎞⎟⎟⎟⎟⎠ (8)

s.t. ωk ∈ (0, 1),
K∑

k=1

ωk = 1,

arises as the posterior mode in a Bayesian analysis with a log score (pseudo-) log likelihood and a Dirichlet
prior. It puts positive probability only on the unit simplex and also shrinks weights toward equality for a certain
hyperparameter configuration.

4. Rényi divergence of order α from ω to ω∗,

Dα(ω∗
∥ ω) =

1
α − 1

log

(
K∑

k=1

1/Kα

ωα−1
k

)
,

encompasses various statistical divergences including Kullback–Leibler divergence (α=1) and Hellinger distance
(α=2), and can be used to produce still more interesting regularized estimators.11

ll of the above divergence functions shrink the density mixture weights toward equality, thereby promoting inclusion
f more forecasters in the regularized mixture. Importantly, the optimization that defines the regularized estimator (7) is
onvex so long as D(ω, ω∗) is a convex function of ω, because the log score and simplex constraints are convex functions
f ω. This makes numerical computation of the estimator straightforward.

.4. Partially-egalitarian ridge and subset averaging

One might want a density forecast version of the ‘‘partially egalitarian" penalizations developed for point forecasts
ase by Diebold and Shin (2019). Consider, for example, the simplex-constrained partially egalitarian ridge problem:

ω̂ = min
w

(
−

T∑
t=1

log

(
K∑

k=1

wkfk,t (yt )

)
+ λ

K∑
k=1

(
wk −

1
δ(w)

)2
)

(9)

s.t. wk ∈ [0, 1],
K∑

k=1

wk = 1,

here δ(ω) is the number of non-zero elements in ω. Recall that a LASSO-type L1 penalty is also implicitly embedded
n the partially egalitarian ridge estimator (9) via the simplex constraint, which promotes selection of some coefficients
o 0. Hence partially-egalitarian ridge discards some forecasters and then shrinks the survivors’ weights toward equality
1/δ(ω)), in contrast to the simplex+ridge estimator (5), which discards some forecasters but then shrinks all weights
oward equality (1/K ).

Computation of the partially-egalitarian ridge solution (9) is possible in principle, as follows. First we note that there
re CK

κ possible density forecasters mixtures, where κ ∈ [1, 2, 3, . . . , K ] is the number of forecasters included in the
ixture. Then, for the jth such mixture (j = 1, 2, . . . , CK

κ ), we solve

L∗(κ, j) = min
wj

(
−

T∑
t=1

log

(
K∑

k=1

w
j
kfk,t (yt )

)
+ λ

K∑
k=1

(
w

j
k −

1
δ(w)

)2
)

(10)

s.t.wj
k ∈ [0, 1],

K∑
k=1

w
j
k = 1,

11 Rényi divergence, moreover, is equivalent to Cressie–Read discrepancy up to an affine transformation.
7
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here w
j
k is zero if the kth forecaster is not selected in the jth mixture. In this case, some of the mixture weights are

orced to zero, so the penalty term is reduced to

λ

K∑
k=1

(
w

j
k −

1
δ(w)

)2

= λ
∑
k∈N

(
w

j
k −

1
κ

)2

,

where N = {k : w
j
k ̸= 0}. This is just a partially egalitarian ridge mixture for a particular set of forecasters. The solution

to the full partially egalitarian ridge problem (9) is then argminκ,j L∗(κ, j).
Unfortunately, however, if partially-egalitarian ridge mixtures are possible in principle, they are nevertheless infeasible

in practice. The computational cost is huge, because the penalized optimization (10) must be solved numerically nK =∑K
κ=1 C

K
κ times. For example, when K=20, nK=1048575.

But there is one very important exception. As λ→∞ in Eq. (9), the partially egalitarian estimator converges to a
direct subset averaging procedure in the spirit of Elliott (2011), which is simple to compute and automatically imposes
the simplex constraint. The subset averaging idea is trivial: At each time, rolling forward, we simply find and use the
historically best-performing average.

The basic subset average is ‘‘best N-average". We exogenously select N , the number of included forecasters, and then
e determine the historically best-performing N-forecast average and use it. We might, for example, select N=3, in which
ase at any time t we use data through time t , determine the historically best-performing 3-average, and use it to predict
t+1. Then at time t+1 we update and use data through time t+1, determine the historically best-performing 3-average,
use it to predict t+2, and so on, proceeding through the sample.

A natural extension of ‘‘best N-average" is ‘‘best ≤Nmax-average", which eliminates the choice of N , instead requir-
ing only choice of a maximum number of included forecasters, Nmax. At each time t we determine the historically
best-performing N-average such that N≤Nmax, and we use it to predict t+1, proceeding through the sample.

Although subset average computation is much less demanding than full partial egalitarian ridge computation, it can
nevertheless be substantial, depending on K and N (or Nmax). Finding the best ≤Nmax-Average from among K forecasters,
for example, requires computing KCNmax+KCNmax−1+...+KC1 simple averages and then sorting them to determine the
minimum, each period. Fortunately, however, the relevant K and Nmax are quite small in typical economic combinations. In
our subsequent empirical work, for example, Nmax≤4 appears adequate, and we have K=19. Best ≤4-average combination
requires evaluating and sorting just 19C4 +19 C3 +19 C2 +19 C1 = 5035 averages per period.

3.5. Discussion

Having now considered both regularization objectives and constraints (penalties), and the resulting estimators that
balance them, some additional discussion is warranted.

3.5.1. On the novelty of density forecast mixtures
It is important to note that our regularized mixtures of density forecasts are not just straightforward adaptations of

existing methods of combining point forecasts. They differ in important and interesting ways. First, the objective function
changes. Things like ‘‘forecast errors" and the ‘‘sum of squared errors" are ill-defined in the density case. Appropriate
density forecast scoring rules must be used. We have emphasized several, including the log score, the Brier score, and the
ranked score.

Second, the penalty function changes. When forming mixtures of density forecasts, the unit simplex constraint must
be imposed, and it has the side benefit of proving some regularization. Mixtures of density forecasts nevertheless
admit new regularization penalties that are intimately connected to the maintained simplex constraint, by viewing the
mixture weights as a discrete probability distribution. We introduced several such penalties, emphasizing Kullback–Leibler
distance (entropy).

Finally – and we have not yet noted this – it is generally unnecessary to center regularization penalties around equal
weights once the simplex constraint is imposed. Shrinkage toward equal weights will be induced either way. Consider,
for example, the simplex+ridge penalty in Eq. (5), and consider centering around equal weights, as written, vs centering
around 0. There is no difference, because

K∑
k=1

(
ωk −

1
K

)2

=

K∑
k=1

ω2
k −

2
K

K∑
k=1

ωk +
1
K

=

K∑
k=1

ω2
k +

1 − 2K
K

,

(11)

here the last equality is due to the sum-to-one restriction embedded in the simplex constraint.12 The intuition is simply
hat shrinkage toward 0 is impossible when maintaining the sum-to-one restriction, and equal weights are as close to 0
s one can get.

12 In fact this equivalence holds as long as all weights are centered on the same value (it does not have to be 1/K ) and the weights are constrained
o sum to a bounded real value (it does not have to be 1).
8
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.5.2. On our use of linear mixtures
Our focus on linear mixtures is intentional. There are several reasons. First, linear combinations are simple to compute,

oth in absolute terms and relative to nonlinear combinations.
Second, linear combination is typically the default option in practice. For example, when central bank density forecast

urveys summarize their results, they construct a representative predictive density based on linear combination (as with
he ECB-SPF surveys that we study below).

Finally, linear combinations turn out to have provably good properties. For example, as noted by Geweke and Amisano
2011), if the process of combination is to commute with any possible marginalization of the distributions involved, then
he combination must be linear.

It is worth noting, however, that although we emphasize linearity for the above reasons, our core approach –
egularized mixtures of predictive densities – is potentially equally relevant in nonlinear environments. Nonlinear classes
f mixture aggregation rules include logarithmic weighted averaging of PDFs (Kascha and Ravazzolo, 2010; Wallis, 2011);
eighted averaging of CDFs, or ‘‘quantile aggregation" (Busetti, 2017); and the EMOS approach popular in weather

orecasting (Gneiting et al., 2005).13 Exploration of nonlinear approaches is, however, beyond the scope of the present
aper.

.5.3. On the relationship of our mixture combinations of predictive densities to mixture-of-experts models
The mixtures-of-experts model refers to a large class of mixture models in statistics, computer science, machine

earning and related disciplines (Yuksel et al., 2012; Gormley and Frühwirth-Schnatter, 2019), and it offers a flexible
ay to approximate an arbitrary function by mixing several density functions. More specifically, in the mixtures-of-
xperts framework, the mixture models aim to learn about the conditional distribution of the output variable conditional
n input variables (i.e., covariates). In such mixture models, location, scale, and mixing probabilities are allowed to be
ifferent across individual densities (i.e., experts). This type of model is quite flexible and offers a theoretical guarantee
o consistently estimate the unknown data generating process (i.e., a true conditional density of the output variable given
ovariates) under some conditions (Jiang and Tanner, 1999; Norets, 2010).
Our mixture combinations of predictive distributions approach and the mixtures-of-experts approach are related

nsofar as both aim to approximate the data generating process by combining several density functions. However, they
re different in an important way. Our approach takes each mixture component as given while the mixtures-of-experts
odel lets the user parameterize and estimate each component in the mixtures. Moreover, in our framework oftentimes
e do not even know the exact conditioning set (or, conditioning variables) that each forecaster used to derive their
robability/density forecast, while the user of the mixtures-of-experts model selects which covariates to include in the
ixture component. Therefore, our approach and problem is about how to aggregate information contained in each
ensity forecast to produce a better predictive density, whereas the mixtures-of-experts approach and problem is about
ow to represent and estimate the conditional probability density function using the mixtures of densities.

. Monte Carlo

We now explore the potential of our regularized mixture estimators via a small Monte Carlo experiment.

.1. Data-generating process and forecasts

The data-generating process (DGP), which we assume to be known by the forecasters, is:

yt = xt + σyet , et ∼ iidN(0, 1)
xt = φxxt−1 + σxvt , vt ∼ iidN(0, 1),

(12)

here e and v are orthogonal at all leads and lags. y is the variable to be forecast, and xt can be interpreted as the
ong-run component of yt . Individual forecasters receive heterogeneous independent noisy signals about xt . For forecaster
we have

zkt = xt + σzkηkt , ηkt ∼ iidN(0, 1), (13)

here ηk and ηk′ are orthogonal at all leads and lags for all forecasters k and k′. This signal is noisy yet leading in that zkt+1
s available to forecaster k at time t . Assume that forecasters have a strong belief that the 1-step-ahead predictive density
s Gaussian with variance σ 2

y , but that they do not know its mean, and that forecaster k therefore uses zkt+1, resulting in
he predictive density

pkt (yt+1) = N(zkt+1, σ
2
y ). (14)

ote that in this environment, forecasters’ predictive densities differ only by their locations (means).

13 See also Ranjan and Gneiting (2010), Gneiting and Ranjan (2013), Billio et al. (2013), Kapetanios et al. (2015), McAlinn and West (2019),
and Takanashi and McAlinn (2020).
9
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Table 1
Average log scores.

DGP 1 DGP 2

Regularization group L # λ∗ L # λ∗

Simplex 1.31 5.27 NA 1.31 4.75 NA
Simplex+Ridge 1.15 20.00 2511.25 1.20 8.66 15.00
Simplex+Entropy 1.15 20.00 5.22 1.27 20.00 0.10

Subset Averages L # λ∗ L # λ∗

Best N-Average:
N = 1 2.65 1.00 NA 2.86 1.00 NA
N = 2 1.60 2.00 NA 1.61 2.00 NA
N = 3 1.38 3.00 NA 1.35 3.00 NA
N = 4 1.29 4.00 NA 1.27 4.00 NA
N = 5 1.23 5.00 NA 1.24 5.00 NA
N = 6 1.22 6.00 NA 1.20 6.00 NA
N = 7 1.21 7.00 NA 1.19 7.00 NA
N = 8 1.20 8.00 NA 1.18 8.00 NA
N = 9 1.18 9.00 NA 1.18 9.00 NA
N = 10 1.18 10.00 NA 1.19 10.00 NA
N = 15 1.16 15.00 NA 1.46 15.00 NA
N = 20 1.15 20.00 NA 1.65 20.00 NA
Best ≤ 2-Average 1.61 2.00 NA 1.62 2.00 NA
Best ≤ 3-Average 1.42 2.84 NA 1.40 2.81 NA
Best ≤ 5-Average 1.34 3.63 NA 1.35 3.44 NA
Best ≤ 10-Average 1.34 3.71 NA 1.34 3.49 NA
Best ≤ 15-Average 1.34 3.71 NA 1.34 3.49 NA
Best ≤ 20-Average 1.34 3.71 NA 1.34 3.49 NA

Comparisons L # λ∗ L # λ∗

Best 0.24 1 NA 0.27 1 NA
75% 0.53 1 NA 0.99 1 NA
Median 1.66 1 NA 5.37 1 NA
25% 4.16 1 NA 33.73 1 NA
Worst 12.20 1 NA 193.02 1 NA

Simple Average 1.15 20 NA 1.65 20 NA

Notes: L is the average log score, # is the average number of forecasters selected, λ∗ is the ex post
optimal penalty parameter, and K is the total number of forecasters. We perform 10,000 Monte Carlo
replications.

.2. Results

We consider two parameterizations:

1. DGP 1: σzk=1 for all k
2. DGP 2: σzk=1 for k = 1, 2, . . . , K

2 and σzk=5 for k =
K
2 +1, . . . , K ,

here each DGP has common parameters φx=0.9, σx=1, σy=0.5. The two DGPs differ only by the quality of the signals
that forecasters receive. Under DGP 1 the simple average should be preferred, because all signals are of the same quality,
while under DGP 2 the linear opinion rule should be preferred (at least asymptotically, so that estimation error vanishes),
giving more weight to forecasters k = 1, 2, . . . , K

2 , who receive better signals.
To cohere with our subsequent empirical work, we explore K=T=20. We generate data, estimate mixture weights,

enerate 1-step-ahead mixture densities, and evaluate them using the log score objective. We repeat this 10,000 times
nd compute the average LPS for several methods:

1. Simple average
2. Simplex (Eq. (4))
3. Simplex+ridge (Eq. (5))
4. Simplex+entropy (Eq. (8))
5. Subset averaging (Eq. (9) with λ→∞).

For each of simplex+ridge and simplex+entropy, we explore 20 penalization strengths. For simplex+ridge, we choose 10
equispaced points in [1e-15,10] and 10 equispaced points in [15,10000]. For simplex+entropy we choose 10 equispaced
points in [1e-15,0.2] and 10 equispaced points in [0.3,20].

Results appear in Table 1 and Fig. 1. In Table 1 we present the optimized average log score for each method under
DGPs 1 and 2, respectively. In Fig. 1 we show how the optimized score varies with regularization penalty strength under
DGPs 1 and 2, respectively. Under DGP 1, simple averaging performs well, and unregularized simplex performs poorly,
10
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Fig. 1. Monte Carlo Estimates of Expected Mixture Performance vs Penalty Strength. Note: We perform 10,000 Monte Carlo replications.

as expected. As the strength of shrinkage gets heavier, the performance of both simplex+entropy and simplex+ridge
improves monotonically until they perform as well as the simple average (full shrinkage). In addition, the performance
of simplex+entropy improves more quickly than that of simplex+ridge as shrinkage strength increases and dominates
throughout. Finally, subset averaging performs admirably under DGP 1, and as expected the optimal ‘‘subset" includes all
forecasters.

Under DGP 2, simplex is expected to perform well, and simple averaging is expected to perform poorly. Simplex does
ndeed outperform simple averaging. Moreover, both simplex+ridge and simplex+entropy behave as expected. For little
hrinkage (toward the left), their performance is similar to that of simplex, and for heavy shrinkage (toward the right),
heir performance is similar to that of the simple average. In between, for moderate amounts of shrinkage, they outperform
implex. In that region, regularized simplex improves on unregularized simplex, because the large unregularized simplex
stimation error makes it likely that some relevant forecasters are dropped from the pool, and regularization brings them
ack. Importantly, subset averaging continues to perform admirably under DGP 2, but now the optimal average involves

nly 10 or so forecasters, as expected.

11



F.X. Diebold, M. Shin and B. Zhang Journal of Econometrics xxx (xxxx) xxx

4

e
z
d
r
f

i
d
m
e
s

5

i
E
W
i
a
f
t

5

C
s

O
f
8

f
2
r

d
p
t
i
t

f
t
a

s
s

.3. Discussion

First, note that we endow our forecasters with incompletely-rational predictive densities. In particular, the mean of
ach forecaster’s predictive density is simply the observed signal zkt+1, whereas replacing zkt+1 with E[xt+1|zkt+1, zkt , . . . ,
k1] would result in better mean forecast. We do this intentionally, in an effort to achieve a more realistic Monte Carlo
esign, as many real-world forecasters appear incompletely rational. Nevertheless it is also of interest to explore fully-
ational forecasts, which are an important and obvious benchmark. Hence we repeat the Monte Carlo with fully-rational
orecasts. The results, which appear in Appendix B, are qualitatively identical.

Second, note that the performance documented in Table 1 and Fig. 1 is almost surely not achievable in practice, because
t is based on use of ex post optimal penalty parameters (λ’s). Nevertheless the results are informative, because they
ocument what can be achieved in principle, even if not necessarily in practice. Practical performance is an empirical
atter, to which we now turn, in applications to Eurozone inflation and real interest rates. The empirical analysis will
lucidate, among other things, practical implementation issues such as the tuning of regularization parameters, with
urprising results.

. Eurozone inflation and real interest rate forecasts

Here we use our methods to construct regularized mixtures of density forecasts for Eurozone inflation and real
nterest rates. Expected inflation is a key driver of the bond market via its direct impact on nominal interest rates.
xpected inflation may also negatively impact real growth, and hence the stock market, insofar as it ‘‘puts sand in the
alrasian gears", as classically emphasized by Bresciani-Turroni (1937). High inflation, moreover, also tends to be volatile

nflation (Friedman, 1977), which puts additional sand in the gears.14 Expected inflation is also a key part of the ex
nte real interest rate, which in turn is a key guide to intertemporal allocation and a key link between macroeconomic
undamentals and financial markets. From a variety of angles, then, inflation forecasts are central to financial markets,
he macroeconomy, and the interface.

.1. Data

Following the pathbreaking work of Conflitti et al. (2015), we study inflation density forecasts from the European
entral Bank Survey of Professional Forecasters (ECB-SPF), which has been undertaken since 1999. Participants are
urveyed quarterly, in January, April, July, and October.15 Our forecast sample contains 83 quarterly surveys, starting
in 1999Q1 and ending in 2019Q3.

The precise Euro-area inflation variable about which the ECB-SPF asks is the percentage change in the Harmonized
Index of Consumer Prices (HICP), for the year following the forecast.16 For example, when the survey was conducted in
ctober 2017 (2017Q4), HICP inflation data were available up to September 2017, so the 2017Q4 survey asks for a forecast
or the year from October 2017 through September 2018. Our realization sample, matched to our forecast sample, contains
3 quarterly observations, starting in December 1999 and ending in June 2020.
As an entrée into the density forecast data, in Fig. 2 we show all individual survey inflation forecasts expressed as

requency polygons, and the simple average mixture forecast expressed as a histogram, for two illustrative surveys:
004Q4 (early in the sample), 2018Q4 (late in the sample). For comparison we also show the 2004Q4 and 2018Q4
ealizations as vertical lines in each panel.

At each date there is substantial variation of the individual forecasts around the average forecast. Moreover, substantial
ifferences in the average forecasts are apparent at the two survey dates. The average forecast in 2004Q4, for example,
uts 2.3% probability on the event that the inflation rate is less than 1%, whereas in 2018Q4 it puts 10.5% probability on
he same event. More generally, the average forecast shifts systematically, from right-skewed in 2004Q4 to left-skewed
n 2018Q4, and interestingly, the realization is indeed in the right tail of the mixture density for 2004Q4 and in the left
ail for 2018Q4.

In Fig. 3 we show the complete time series of simple average mixture forecasts and realizations. We show the average
orecast densities as frequency polygons in the top panel, and as a heat map in the bottom panel, which also contains a
ime-series plot of the realizations. Large temporal movements in both location and scale of the average density forecasts
re evident, and the realizations display similarly large variation.
We will soon obtain mixture densities using the log score objective and several regularizations, including simplex,

implex+ridge, simplex+entropy, and subset averaging. Before proceeding to empirical results, however, we address
everal issues.

14 See also (Chen et al., 1986).
15 See https://www.ecb.europa.eu/stats/ecb_surveys/survey_of_professional_forecasters/html/index.en.html.
16 Eurostat, Harmonized Index of Consumer Prices: All Items for Euro area (19 countries) [CP0000EZ19M086NEST], Retrieved from FRED, Federal
Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/CP0000EZ19M086NEST.
12
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Fig. 2. Eurozone Inflation: Individual Density Forecasts, Simple Average Mixture Forecasts, and Realizations. Notes: We show the individual survey
inflation forecasts in gray (as frequency polygons), the simple average mixture forecast in orange (as a histogram), and realized inflation as a black
vertical line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.1.1. Survey entry and exit
First, forecasters can enter and exit the survey pool. There are 103 unique forecasters between 1999Q1 and 2019Q4,

and no forecaster appears in the pool continuously. Following Genre et al. (2013), we proceed by first excluding forecasters
who miss more than four consecutive surveys, which leaves 18 forecasters. Then we interpolate the remaining gaps based
on historical performance.17

5.1.2. Time-varying bin definitions
Second, outcome bin definitions vary over time. Although bin definitions have been stable for mid-range ‘‘standard"

inflation values, extreme tail bins have become finer over time, as realizations have fallen in the tails. For example, for high

17 More precisely, we fill in the gaps in the first survey (t=1, 1999Q1) with the average of non-missing forecasts from all other available forecasters.
Then we calculate the ranked score for each forecaster and divide them into five mutually exclusive groups based on the score, and move to the
second survey. At each of the following rounds (t = 2, 3, . . . , T ), we set the missing observations of a particular forecaster to the average of
non-missing forecasts from her group, and then using the full set of forecasts we re-calculate ranked scores and update the group structure for use
in the next round.
13
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Fig. 3. Eurozone Inflation: Simple Average Mixture Forecasts and Realizations. Notes: In the top panel we show simple average mixture densities
over time, expressed as frequency polygons. In the bottom panel we show heat maps of the simple average mixture densities over time, with the
realizedEurozone inflation rate superimposed. The dashed line indicates zero.

inflation, there was originally a >3.5 bin, but it was eventually split into 3.5–4 and >4 bins.18 We proceed by merging
xtreme tail bins sufficiently to produce 11 bin definitions, fixed for the entire sample: (−∞, −0.5], (−0.5, 0], (0, 0.5],
. . , (3.5, 4], (4, ∞].

5.1.3. Zero-probability realizations
Finally, complications can arise with the log-score objective. Consider, for example, the survey forecast:

y ∈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(−∞, 1.5] w.p. = 0
(1.5, 2.0] w.p. = .3
(2.0, 2.5] w.p. = .5
(2.5, 3.0] w.p. = .2
(3.0, ∞] w.p. = 0.

(15)

18 During our sample period the number of bins started at 9, peaked at 14 during the Great Recession, and eventually dropped to 12.
14
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Table 2
Log scores for eurozone inflation.
Regularized Mixtures L # ECB/SPF L #

Simplex 1.88 3.52 Best 2.02 1
Simplex+Ridge 1.86 5.00 90% 2.04 1
Simplex+Entropy 1.87 19.00 70% 2.13 1
Best 4-Average: 1.87 4 Median 2.17 1
Best ≤4-Average 1.90 2.24 Worst 2.56 1

Simple Average 1.98 18

Notes: We show log scores for 1-year-ahead Eurozone inflation density forecasts, made quarterly,
using a 20-quarter rolling estimation window. The burn-in sample is 1999Q1–2000Q4, and the forecast
evaluation sample is 2001Q1–2019Q3 (75 quarters). There are 18 ECB-SPF density forecasters in the pool,
plus a 19th forecaster whose predictive density is constant and uniform, for a total of 19 forecasters.
L is the log score, and # is the average number of forecasters selected. Results for simplex+ridge and
simplex+entropy are based on ex post optimal penalty parameters. See text for details.

he zero probabilities assigned to the leftmost and rightmost bins obviously create a problem (infinite loss) for the
og-score objective, due to its use of logs, if a realization occurs that was assigned zero probability.

Zero-probability realizations rarely, but occasionally, appear in our data. Sometimes they occur in edge bins (e.g., (4, ∞])
because forecasters sometimes fail to put positive probability on those bins. In addition to the edge-bin phenomenon, some
forecasters’ histograms are simply too sharp, and they sometimes put zero probability on an interior bin that eventually
contains the realization.

One can address the log score ‘‘zero problem" by requiring the survey bin into which the realization falls to have been
assigned at least some small probability, say 1%. We achieve this by assigning 1% probability to the bin containing the
realization if it had originally been assigned 0, where the 1% is taken in equal shares from the bins originally assigned
non-zero probability.19

5.2. Empirical results for inflation

There are 18 ECB-SPF density forecasters in the pool. We also include a fictitious 19th forecaster whose predictive
density is constant and uniform, in rough parallel to including a constant in point forecast combining regressions, for a
total of 19 forecasters. Doing so appears a priori desirable, in the tradition of Granger and Ramanathan (1984). Moreover,
it constrains the mixture density to put positive probability on each histogram bin as long as the uniform forecaster gets
a non-zero mixture weight, in which case the earlier-discussed log score ‘‘zero problem" vanishes.

Results appear in Table 2. Strikingly, each regularized mixture outperforms each ECB/SPF individual forecaster (even
the ex post best forecaster). To get a feel for the size of the improvement, note that the log score of the best ≤4-average,
for example, is approximately 15% better than that of the median individual forecaster, and 7% better than that of the ex
post best individual forecaster. Each regularized mixture also outperforms the simple average, which in turn outperforms
the ECB/SPF forecasts.

Table 2 also reveals that the average number of forecasters selected after regularization is always small, regardless of
the regularization method.20 Simultaneously, both the log scores in Table 2 and the graphs in Fig. 4 reveal that the simplex
and best average regularized mixtures are almost identical, suggesting that the simplex solution is effectively dropping
all but a few forecasts and simply averaging the survivors, producing something very close to a best ≤4-average.

The good performance of both simplex and best average is particularly noteworthy insofar as neither requires tuning.21
That is, quite remarkably, the simplex and best average regularizations perform as well as those requiring choice of tuning
parameters (simplex+ridge and simplex+entropy), despite the fact that we evaluate the latter in Table 2 using ex post
optimal tuning parameters, which is not feasible in real time.

If the effects of simplex and best ≤4-average regularization are almost identical, both are nevertheless very different
from a simple average mixture. This is revealed clearly in Fig. 5, in which we compare the time series of simple average
mixture densities (top panel) and best-average mixture densities (bottom panel).

The bottom panel of Fig. 5 also reveals that the effects of best-average regularization differ strikingly before and after
the onset of the Great Recession. Before the onset of the Great Recession, best-average regularization moves probability
mass upward toward higher inflation relative to simple averaging, particularly from the 1.0%–1.5% range to the 1.5%–2.5%
range, mostly adjusting density forecast location and symmetry. After that, however, best-average regularization spreads

19 One could of course switch to another objective, but the log score objective is simple and deservedly popular, which is why we have used it
throughout this paper as a leading case for both our theory and Monte Carlo. We will continue to use it for our empirical work, where it is also
deservedly popular, despite the zero problem.
20 simplex+entropy selects all 19 forecasters, but simplex+entropy must select all 19 forecasters, because log(ωk)→∞ as ωk→0. All regularizations
apable of selecting only a few forecasters do in fact select only a few.
21 Strictly speaking, best average procedures require some slight tuning – a choice of N – although we are comfortable with simply always adopting
= 4.
15
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Fig. 4. Simplex and Best ≤4-Average Mixture Forecasts Over Time, Eurozone Inflation. Notes: We show density forecast mixtures expressed as
frequency polygons. The forecasts are quarterly, from 1999Q1 to 2019Q3.

probability mass from the center into both tails of the distribution, from the 1.0%–2.5% range outward to below 0.5% and
above 3.0%, mostly adjusting density forecast dispersion and kurtosis.

The effects of best-average regularization, and their structural shift at the onset of the Great Recession, are revealed
even more clearly in Fig. 6, where we show a heat map of the bin-by-bin differences between the best ≤4-average and
imple average mixture densities (best ≤4-average minus simple average). Red bin shading indicates that best ≤4-average
dds probability to the bin relative to the simple average, and blue bin shading indicates that best ≤4-average subtracts
robability from the bin relative to the simple average. We also superimpose the realized Eurozone inflation rate.
Before the Great Recession, regularization clearly subtracts probability from low interest rate bins (blue shading,

oughly from 0 to 1.5%) and adds it to higher interest rate bins (red shading, roughly from 1.5 to 2.5%), a good thing to do
uring that period as the realized inflation rate held close to 2%. After the Great Recession, in sharp contrast, regularization
learly subtracts probability from mid-range low interest rate bins (blue shading, roughly from 0.5 to 2.5%) and adds it to
oth higher and lower tail bins (red shading, roughly down to bins in 0.5 to −0.5%, and up to bins in 2.5%–4%), reflecting
ncreased awareness of tail risk. This was also a good adjustment, as post-2007 inflation volatility clearly increased, with
ealized inflation taking wide swings.

It is also informative to examine and compare probability integral transforms (PITs) for various mixtures. Diebold et al.
(1998) consider the continuous case, in which the PIT is defined as PITt =

∫ yt
−∞

pt (u)du, and show that correct conditional
alibration of density forecasts implies that PIT ∼ iid U(0, 1). Czado et al. (2009) extend the evaluation framework to the
iscrete case and show that the result still holds for an appropriate discrete PIT definition. To assess uniformity, and any
atterns in deviations from uniformity, in Fig. 7 we show histograms of the (Czado et al., 2009) discrete PIT for the simple
verage and best ≤4-average mixtures.
The PIT histograms reveal problems with the simple average mixture, which match our discussion of the two regimes

n Figs. 5 and 6. In particular, the simple average PIT histograms show noticeable deviations from uniformity in both
ubsamples, and the shapes of the deviations are very different.
In the first subsample, the simple average PIT histogram is highly skewed as shown in the upper-left panel of Fig. 7,

ith far too little probability mass near 0 and far too much near 1, again indicating too many large inflation realizations
elative to the simple average density forecasts. Regularization, however, shifts the densities upward as discussed earlier,
roducing an improved (if still imperfect) best-average PIT as seen in the bottom left panel of Fig. 7.
In the second subsample the simple average PIT histogram is more U-shaped, as shown in the upper-right panel of

ig. 7. In this regime the regularization spreads out the densities as discussed earlier, better accommodating the tail
ealizations and producing an improved best ≤4-average PIT as seen in the bottom right panel of Fig. 7.

.3. Empirical results for real interest rates

Finally, in parallel to our earlier examination of ECB/SPF inflation density forecasts, we now examine real interest rate
ensity forecasts. The real interest rate density is a simple sign change and location shift of the inflation density:

f (rt,t+1) = it,t+1 − f (πt,t+1), (16)

here r denotes the real interest rate, i denotes the nominal interest rate, and π denotes inflation. Real interest rate
ensities are of course driven by the inflation densities via Eq. (16), but it is nevertheless interesting to make the
ranslation from inflation into the real cost of borrowing.
16
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Fig. 5. Simple Average and Best ≤4-Average Mixture Forecasts Over Time, Eurozone Inflation. Notes: We show density forecast mixtures expressed
as frequency polygons. The forecasts are quarterly, from 1999Q1 to 2019Q3.

In Fig. 8 we show the simple average and best ≤4-average real interest rate density forecasts, and in Fig. 9 we show the
differences between them, together with the realizations.22 One is immediately struck by the high probability assigned
o negative real rates through much of the sample. P(rt,t+1)<0 is, for example, routinely greater than 1/2 since the end
f the Great Recession, and the realized real rates often are negative.
Nevertheless our earlier inflation patterns and lessons remain firmly intact, because real interest rate density forecasts

re driven by inflation density forecasts. There are two clear real interest rate ‘‘regularization regimes’’, demarcated by the
nset of the Great Recession. In the first, the best-average regularization pushes real interest rate densities downward,

22 There is no need to show regularized estimation results for real interest rates, because the log score is invariant to the switch from inflation to
real interest rate density forecasts defined by Eq. (16). There is similarly no need to show real interest rate PIT histograms, because they are exact
irror images of the inflation PIT histograms in Fig. 7, as revealed by Eq. (16).
17
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Fig. 6. Difference Between Best ≤4-Average and Simple Average Mixture Forecasts, Eurozone Inflation, with Superimposed Inflation Realizations.
otes: We show a heat map of the bin-by-bin differences between the best ≤4-average and simple average mixture densities (best ≤4-average
inus simple average). Red bin shading indicates that best ≤4-average adds probability to the bin relative to the simple average, and blue bin
hading indicates that best ≤4-average subtracts probability from the bin relative to the simple average. We also superimpose the realized Eurozone
nflation rate. The dashed line indicates zero.

Fig. 7. PIT Histograms, Simple Average and Best ≤4-Average Mixture Forecasts, Eurozone Inflation. Notes: We show histograms of discrete probability
integral transforms (PITs) for simple average and best ≤4-average mixture forecasts. In red we show the pointwise binomial confidence bands that
hold when PIT ∼ iid U(0, 1). See text for details. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

because, as discussed earlier, regularization pushes inflation densities upward. In the second, the regularization adds
dispersion to real interest rate densities, because regularization adds dispersion to inflation densities.

5.4. Discussion

Although our earlier Monte Carlo of Section 4 suggested the possibility of modest gains from additional regularization
beyond simplex when using the ex post optimal regularization parameter, there is no guarantee of achieving those gains
18
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Fig. 8. Simple Average and Best ≤4-Average Mixture Forecasts Over Time, Eurozone Real Interest Rate. Notes: We show density forecast mixtures
expressed as frequency polygons. The forecasts are quarterly, from 1999Q1 to 2019Q3.

in practical applications like our ECB-SPF analysis, where determination of a suitable regularization parameter would
require data-driven methods (e.g., dynamic cross validation) that may perform poorly in small samples.

The remarkable thing that emerges in both our Monte Carlo and in our ECB-SPF analysis is that the two simplest
regularizations – simplex and best-average – do almost as well as the more sophisticated regularizations with ex post
optimal regularization parameters, and they do not require tuning. Hence both simplex and best-average appear highly
appealing for practical work.

Simplex has no regularization parameter because it achieves its regularization by direct imposition of two hard con-
straints, non-negativity and sum-to-one. There is no issue of choosing the ‘‘strength" of the regularization — non-negativity
and sum-to-one are simply imposed and must hold exactly.

Best-average does have an implicit regularization parameter, the number of forecasters kept for averaging (equiv-
alently, the number of zero weights imposed on various forecasters), which it selects in real time by brute-force
19
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Fig. 9. Difference Between Best ≤4-Average and Simple Average Mixture Forecasts, Eurozone Real Interest Rate, with Superimposed Real Interest
Rate Realizations. Notes: We show a heat map of the bin-by-bin differences between the best ≤4-average and simple average mixture densities
best ≤4-average minus simple average). Red bin shading indicates that best ≤4-average adds probability to the bin relative to the simple average,
nd blue bin shading indicates that best ≤4-average subtracts probability from the bin relative to the simple average. We also superimpose the
ealized Eurozone real interest rate. The dashed line indicates zero.

etermination of the historically best-performing average — effectively performing precisely the sort of dynamic cross
alidation mentioned above.
Moreover, in our empirical work, although there is no reason why it should be the case in general, the best-average and

implex solutions are nearly identical — simplex assigns zero weight to many forecasters and then equally weights those
emaining. This precisely parallels the nearly-identical best-average and egalitarian lasso point forecast combinations
n Diebold and Shin (2019).

The upshot is that, at least for the analyses undertaken in this paper, there is little gain from regularization beyond
implex or best-average.

. Concluding remarks and directions for future research

We have proposed methods for constructing regularized mixtures of density forecasts, exploring a variety of objectives
nd penalties, which we used in substantive explorations of Eurozone inflation and real interest rate survey density
orecasts. All individual survey forecasters (even the ex post best forecaster) are outperformed ex ante by our regularized
ixtures. The log scores of the simplex and best-average mixtures, for example, are approximately 15% better than that
f the ex post median forecaster, and 7% better than that of the ex post best individual forecaster.
Before the Great Recession, regularization tends to correct for bias, shifting inflation density locations upward toward

igher inflation, and hence real interest rate density locations downward toward low or negative real rates. From the Great
ecession onward, the situation is very different — regularization tends to correct for overconfidence, moving probability
ass from the centers to the tails of both inflation and real interest rate density forecasts.
A variety of avenues for future research are apparent. First, our empirical work did not emphasize mixture regulariza-

ion methods that require hyperparameter selection (simplex+ridge or simplex+entropy), because at least in this paper’s
mpirical analyses they added little to the simpler methods that impose sparsity (simplex, best-average). But the benefits
f sparsity may be illusory, as emphasized by Giannone et al. (2021), so the more sophisticated regularizations may prove
seful in other contexts and clearly represent additional empirical exploration. An obvious issue is the efficacy of feasible
eal-time hyperparameter selection.

Second, one could use the probability integral transform as a regularized mixture estimation objective, minimizing a
oodness-of-fit statistic (e.g., Kolmogorov–Smirnov) for testing the joint hypothesis of an iid U(0, 1) probability integral
ransform.

Third, one could broaden our mixture approach to allow flexibly time-varying mixture weights as in Jore et al. (2010),
nd mixture weights that vary over regions of density support, as in Kapetanios et al. (2015).
Finally, one could explore non-mixture approaches to density forecast combination. For example, one could combine

onditional mean point forecasts in the usual way (e.g., Diebold and Shin (2019)) and then build up the full conditional
ensity from the combining-regression residuals. This is related to the work of Gneiting et al. (2005). It may also be
hallenging, however, as indicated by more recent work such as Hounyo and Lahiri (2021).
20
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ppendix A. Derivation of the simplex+entropy regularized estimator

The simplex+entropy estimator solves the optimization problem:

ω̂ = argmin
ω

⎛⎜⎜⎜⎜⎝−

T∑
t=1

log

(
K∑

k=1

ωkfk,t (yt )

)
  

log score

+ (α − 1)

(
−

K∑
k=1

log(ωk)

)
  

entropy penalty

⎞⎟⎟⎟⎟⎠ (A.1)

s.t. ωk ∈ (0, 1),
K∑

k=1

ωk = 1.

As we will show, this arises as the posterior mode in a Bayesian analysis with (1) log likelihood given by the log
score, and (2) Dirichlet prior, which puts positive probability only on the unit simplex but also shrinks toward equal
weights for a certain hyperparameter configuration.23 In particular, the K -dimensional Dirichlet prior is governed by K
hyperparameters, and when they are equal, the prior mean is 1/K . Hence the simplex+entropy regularization (8) with
equal prior hyperparameters does the same thing as simplex+ridge (5): Impose simplex and shrink toward equal weights.

A.1. Prior

The Dirichlet prior on ω = (ω1, ω2, . . . , ωK ) with hyperparameter α = (α1, α2, . . . , αK ) is

fD(ω; α) =
1

B(α)

K∏
k=1

ω
αk−1
k ,

where B(·) is the beta function, αk > 0 ∀k ∈ 1, . . . , K , and the support of ω is ωk∈(0, 1) with
∑K

k=1 ωk = 1.
As is well known, the Dirichlet mean and variance are:

E(ωi) =
αi∑K
k=1 αk

and

var(ωi) =

αi∑K
k=1 αk

(
1 −

αi∑K
k=1 αk

)
1 +

∑K
k=1 αk

.

Hence when α1 = α2 = · · · = αK = α, we have

E[ωk] = 1/K

and

Var(ωk) =
K − 1

αK 3 + K 2 ,

or all k = 1, . . . , K . That is, the prior is centered on equal weights 1/K , and var(ωk)→0 as α→∞, so that α governs
rior precision, with larger α producing heavier shrinkage toward 1/K .

.2. Posterior

The posterior distribution is

fD(ω|y; α) =

T∏
t=1

(
K∑

k=1

ωkfk,t (yt )

)
  

likelihood

×
1

B(α)

K∏
k=1

ωα−1
k  

prior

×
1

p(y)
,

o the log posterior is

log fD(ω; α) =

T∑
t=1

log

(
K∑

k=1

ωkfk,t (yt )

)
+ (α − 1)

K∑
k=1

log(ωk) − log B(α) − log p(y).

23 Formally, we should say ‘‘Bayesian-inspired" rather than Bayesian, ‘‘pseudo-likelihood" rather than likelihood (because a scoring rule is not a
likelihood), and ‘‘pseudo-posterior" rather than posterior. We will refrain from doing so, in an effort to avoid tedious verbiage.
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ecause B(α) and p(y) do not depend on ω, we can drop the last two term, so the posterior mode is

ω̂ = argmin
ω

⎛⎜⎜⎜⎜⎝−

T∑
t=1

log

(
K∑

k=1

ωkfk,t (yt )

)
  

Log score

+ (α − 1)

(
−

K∑
k=1

log(ωk)

)
  

penalty

⎞⎟⎟⎟⎟⎠ (A.2)

s.t. ωk ∈ (0, 1),
K∑

k=1

ωk = 1.

.3. Understanding the penalty term

One way to understand the penalty term is to recall the solution to the empirical likelihood maximization problem
f Owen (2001),

argmin
ω

(
−

K∑
k=1

log(ωk)

)

s.t. ωk ∈ (0, 1),
K∑

k=1

ωk = 1,

which is equal weights, ωk=1/K , ∀k. Hence we see that the penalty part of (A.2) is minimized at ωk=1/K , which yields a
clear interpretation of the penalty term. Larger α means a tighter prior on ω, with heavier shrinkage toward equal weights.
Several interesting limiting cases emerge. First, for α→∞, the penalty term dominates, and the optimal solution is equal
weights. Second, for α→1, the penalty term vanishes, and the optimal solution matches that of the optimal linear pool,
with simplex constraint imposed. Third, there is an upper bound for var(ωk): as α→0, var(ωk)→(K − 1)/K 2.

A.4. Remarks

1. The entropy regularization optimization problem is convex, because both the log-score and the penalty are convex.
A closed form may not exist for the regularized ω, but convexity makes numerical computation straightforward.

2. Entropy regularization has a clear parallel to ridge regularization. As is well known, ridge regularization emerges
as the posterior mode in a Bayesian analysis with Gaussian prior, and as we have shown, entropy regularization
emerges as posterior mode in a Bayesian analysis with Dirichlet prior. Both regularizations, moreover, are governed
by a single parameter linked to prior precision.

3. If the effects of the ridge and entropy penalties are very similar in certain respects (imposition of simplex
and shrinkage toward 1/K ), their full Bayesian interpretations are nevertheless different. In particular, the ridge
(Gaussian) and entropy (Dirichlet) priors differ, even if their means are the same (1/K ), and so the posteriors differ.
For α < 1 the Dirichlet prior distribution may not even have a single mode.

Appendix B. Monte Carlo results for fully-rational forecasts

Recall the DGP used in the Monte Carlo experiment reported in the main text:

yt = xt + σyet (B1)

xt = φxxt−1 + σxvt

zkt = xt + σzkηkt ,

where yt is the variable to be forecast, xt is the long-run component of yt , the zkt are heterogeneous independent noisy
signals about xt received by the forecasters, and all shocks are iidN(0, 1). The signal is leading in that zkt+1 is available to
orecaster k at time t .

In the main text we provide our forecasters with incompletely-rational forecasts. In particular, the mean of each
orecaster’s predictive distribution is the observed signal zkt+1. However, given that xt is serially correlated and hence
kt−1 could provide additional information about xt over zkt , construction of fully-rational mean forecasts of xt requires
ncorporating information from lagged signals. As a result, we replace zkt+1 with x̂kt+1 = E [xt+1 | zkt+1, zkt , . . . , zk1] and
epeat the Monte Carlo with these fully-rational forecasts.

To obtain the optimal extraction of xt+1 given all observed signals for forecaster k, we apply the Kalman filter to the
state-space system:
zkt = xt + σzkηkt (B2)
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Fig. B1. Monte Carlo Estimates of Expected Mixture Performance vs Penalty Strength, Fully-Rational Forecasts.

xt = φxxt−1 + σxvt ,

where all shocks are iidN(0, 1). We run the Kalman filter using the true values of σzk, φx, and σx, because we assume our
orecasters know the underlying DGP. Assuming forecasters have a strong belief that the 1-step-ahead predictive density
s Gaussian with variance σ 2

y , forecaster k’s fully-rational predictive density is then

pkt (yt+1) = N(x̂kt+1, σ
2
y ). (B3)

he simulation results, which appear below in Table B.1 and Fig. B1, are qualitatively identical to those reported in the
ain text.
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Table B.1
Average log scores, fully-rational forecasts.

DGP 1 DGP 2

Regularization group L # λ∗ L # λ∗

Simplex 1.21 4.70 NA 1.22 4.43 NA
Simplex+Ridge 1.07 20.00 2511.25 1.12 9.86 15.00
Simplex+Entropy 1.07 20.00 5.22 1.17 20.00 0.10

Subset Averages L # λ∗ L # λ∗

Best N-Average:
N = 1 1.91 1.00 NA 1.99 1.00 NA
N = 2 1.35 2.00 NA 1.39 2.00 NA
N = 3 1.25 3.00 NA 1.24 3.00 NA
N = 4 1.18 4.00 NA 1.17 4.00 NA
N = 5 1.14 5.00 NA 1.16 5.00 NA
N = 6 1.13 6.00 NA 1.14 6.00 NA
N = 7 1.11 7.00 NA 1.13 7.00 NA
N = 8 1.11 8.00 NA 1.12 8.00 NA
N = 9 1.10 9.00 NA 1.13 9.00 NA
N = 10 1.10 10.00 NA 1.14 10.00 NA
N = 15 1.08 15.00 NA 1.24 15.00 NA
N = 20 1.07 20.00 NA 1.34 20.00 NA
Best ≤ 2-Average 1.37 1.98 NA 1.40 1.98 NA
Best ≤ 3-Average 1.28 2.77 NA 1.28 2.73 NA
Best ≤ 5-Average 1.23 3.38 NA 1.26 3.27 NA
Best ≤ 10-Average 1.23 3.44 NA 1.26 3.31 NA
Best ≤ 15-Average 1.23 3.44 NA 1.26 3.31 NA
Best ≤ 20-Average 1.23 3.44 NA 1.26 3.31 NA

Comparisons L # λ∗ L # λ∗

Best 0.28 1 NA 0.30 1 NA
75% 0.62 1 NA 0.81 1 NA
Median 1.44 1 NA 2.73 1 NA
25% 2.89 1 NA 6.83 1 NA
Worst 6.94 1 NA 17.77 1 NA

Simple Average 1.07 20 NA 1.34 20 NA

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.06.008.

eferences

astveit, K.A., Mitchell, J., Ravazzolo, F., van Dijk, H.K., 2019. The evolution of forecast density combinations in economics. In: Oxford Research
Encyclopedia of Economics and Finance. http://dx.doi.org/10.1093/acrefore/9780190625979.013.381.

misano, G., Geweke, J., 2017. Prediction using several macroeconomic models. Rev. Econ. Stat. 99 (5), 912–925.
skanazi, R., Diebold, F.X., Schorfheide, F., Shin, M., 2018. On the comparison of interval forecasts. J. Time Series Anal. 39, 953–965.
ates, J.M., Granger, C.W.J., 1969. The combination of forecasts. Oper. Res. Q. 20, 451–468.
illio, M., Casarin, R., Ravazzolo, F., Van Dijk, H.K., 2013. Time-varying combinations of predictive densities using nonlinear filtering. J. Econometrics

177 (2), 213–232.
rehmer, J.R., Gneiting, T., 2021. Scoring interval forecasts: Equal-tailed, shortest, and modal interval. Bernoulli 27, 1993–2010, also arXiv:2007.05709

[math.ST], https://arxiv.org/abs/2007.05709.
resciani-Turroni, C., 1937. The Economics of Inflation. Allen and Unwin.
rier, G.W., 1950. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78, 1–3.
rodie, J., Daubechies, I., De Mol, C., Giannone, D., Loris, I., 2009. Sparse and stable Markowitz portfolios. Proc. Natl. Acad. Sci. 106 (30), 12267–12272.
usetti, F., 2017. Quantile aggregation of density forecasts. Oxford Bull. Econ. Stat. 79 (4), 495–512.
hen, N.-F., Roll, R., Ross, S., 1986. Economic forces and the stock market. J. Bus. 383–403.
onflitti, C., De Mol, C., Giannone, D., 2015. Optimal combination of survey forecasts. Int. J. Forecast. 31, 1096–1103.
zado, C., Gneiting, T., Held, L., 2009. Predictive model assessment for count data. Biometrics 65 (4), 1254–1261.
iebold, F.X., 1991. A note on Bayesian forecast combination procedures. In: Hackl, P., Westlund, A. (Eds.), Economic Structural Change: Analysis and

Forecasting. Springer-Verlag, pp. 225–232.
iebold, F.X., Gunther, T., Tay, A., 1998. Evaluating density forecasts, with applications to financial risk management. Internat. Econom. Rev. 39,

863–883.
iebold, F.X., Shin, M., 2017. Assessing point forecast accuracy by stochastic error distance. Econometric Rev. 36, 588–598.
iebold, F.X., Shin, M., 2019. Machine learning for regularized survey forecast combination: Partially-Egalitarian LASSO and its derivatives. Int. J.

Forecast. 35, 1679–1691.
lliott, G., 2011. Averaging and the optimal combination of forecasts. Manuscript, Department of Economics, UCSD.
lliott, G., Timmermann, A., 2016. Economic Forecasting. Princeton University Press.
pstein, E.S., 1969. A scoring system for probability forecasts of ranked categories. J. Appl. Meteorol. 8, 985–987.

riedman, M., 1977. Nobel lecture: Inflation and unemployment. J. Polit. Econ. 85 (3), 451–472.

24

https://doi.org/10.1016/j.jeconom.2022.06.008
http://dx.doi.org/10.1093/acrefore/9780190625979.013.381
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb2
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb3
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb4
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb5
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb5
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb5
http://arxiv.org/abs/2007.05709
https://arxiv.org/abs/2007.05709
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb7
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb8
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb9
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb10
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb11
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb12
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb13
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb14
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb14
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb14
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb15
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb15
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb15
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb16
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb17
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb17
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb17
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb18
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb19
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb20
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb21


F.X. Diebold, M. Shin and B. Zhang Journal of Econometrics xxx (xxxx) xxx

G

G
G
G
G

G
G
G
G
H
H

J

J
K
K
M
N
O
R
T
T
T
W
W
Y
Y
Z

enre, V., Kenny, G., Meyler, A., Timmermann, A., 2013. Combining expert forecasts: Can anything beat the simple average? Int. J. Forecast. 29 (1),
108–121.

eweke, J., Amisano, G., 2011. Optimal prediction pools. J. Econometrics 164 (1), 130–141.
iannone, D., Lenza, M., Primiceri, G.E., 2021. Economic predictions with big data: The illusion of sparsity. Econometrica 89, 2409–2437, in press.
neiting, T., Raftery, A.E., 2007. Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc. 102 (477), 359–378.
neiting, T., Raftery, A.E., Westveld, A.H., Goldman, T., 2005. Calibrated probabilistic forecasting using ensemble model output statistics and minimum

CRPS estimation. Mon. Weather Rev. 133 (5), 1098–1118.
neiting, T., Ranjan, R., 2013. Combining predictive distributions. Electron. J. Stat. 7, 1747–1782.
ood, I.J., 1952. Rational decisions. J. R. Stat. Soc.: Ser. B 14, 107–114.
ormley, I.C., Frühwirth-Schnatter, S., 2019. Mixture of experts models.
ranger, C.W.J., Ramanathan, R., 1984. Improved methods of combining forecasts. J. Forecast. 3, 197–204.
all, S.G., Mitchell, J., 2007. Combining density forecasts. Int. J. Forecast. 23 (1), 1–13.
ounyo, U., Lahiri, K., 2021. Estimating the Variance of a Combined Forecast: Bootstrap-Based Approach. CREATES Research Paper 2021-14, Department

of Economics and Business Economics, Aarhus University.
iang, W., Tanner, M.A., 1999. Hierarchical mixtures-of-experts for exponential family regression models: Approximation and maximum likelihood

estimation. Ann. Statist. 27 (3), 987–1011.
ore, A.S., Mitchell, J., Vahey, S.P., 2010. Combining forecast densities from VARs with uncertain instabilities. J. Appl. Econometrics 25 (4), 621–634.
apetanios, G., Mitchell, J., Price, S., Fawcett, N., 2015. Generalised density forecast combinations. J. Econometrics 188 (1), 150–165.
ascha, C., Ravazzolo, F., 2010. Combining inflation density forecasts. J. Forecast. 29 (1–2), 231–250.
cAlinn, K., West, M., 2019. Dynamic Bayesian predictive synthesis in time series forecasting. J. Econometrics 210 (1), 155–169.
orets, A., 2010. Approximation of conditional densities by smooth mixtures of regressions. Ann. Statist. 38 (3), 1733–1766.
wen, A., 2001. Empirical Likelihood. Chapman and Hall.
anjan, R., Gneiting, T., 2010. Combining probability forecasts. J. R. Stat. Soc. Ser. B Stat. Methodol. 72 (1), 71–91.
akanashi, K., McAlinn, K., 2020. Predictive properties and minimaxity of Bayesian predictive synthesis. Preprint, RIKEN and Temple University.
ibshirani, R., 1996. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58 (1), 267–288.
immermann, A., 2006. Forecast combinations. In: Handbook of Economic Forecasting. Elsevier, pp. 135–196.
allis, K.F., 2011. Combining forecasts–forty years later. Appl. Financial Econ. 21 (1–2), 33–41.
inkler, R.L., Murphy, A.H., 1968. ‘Good’ probability assessors. J. Appl. Meteorol. 7, 751–758.
ao, Y., Vehtari, A., Simpson, D., Gelman, A., 2018. Using stacking to average Bayesian predictive distributions. Bayesian Anal. 13 (3), 917–1003.
uksel, S.E., Wilson, J.N., Gader, P.D., 2012. Twenty years of mixture of experts. IEEE Trans. Neural Netw. Learn. Syst. 23 (8), 1177–1193.
ou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67, 302–320.
25

http://refhub.elsevier.com/S0304-4076(22)00146-4/sb22
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb22
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb22
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb23
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb24
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb25
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb26
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb26
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb26
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb27
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb28
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb29
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb30
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb31
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb32
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb32
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb32
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb33
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb33
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb33
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb34
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb35
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb36
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb37
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb38
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb39
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb40
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb41
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb42
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb43
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb44
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb45
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb46
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb47
http://refhub.elsevier.com/S0304-4076(22)00146-4/sb48

	On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates
	Introduction
	Objectives
	Log score 
	Brier score
	Ranked score
	Multiple forecasters and time periods
	Discussion

	Penalties
	Simplex
	Simplex+ridge
	Simplex+Divergence
	Partially-egalitarian ridge and subset averaging
	Discussion
	On the novelty of density forecast mixtures
	On our use of linear mixtures
	On the relationship of our mixture combinations of predictive densities to mixture-of-experts models


	Monte Carlo
	Data-generating process and forecasts
	Results
	Discussion

	Eurozone inflation and real interest rate forecasts
	Data
	Survey entry and exit
	Time-varying bin definitions
	Zero-probability realizations

	Empirical results for inflation
	Empirical results for real interest rates
	Discussion

	Concluding remarks and directions for future research
	Appendix A. Derivation of the Simplex+Entropy Regularized Estimator
	Prior
	Posterior
	Understanding the penalty term
	Remarks

	Appendix B. Monte Carlo Results for Fully-Rational Forecasts
	Appendix C. Supplementary data
	References


