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a b s t r a c t

The diminishing extent of Arctic sea ice is a key indicator of climate change as well as
being an accelerant for future global warming. Since 1978, Arctic sea ice has been mea-
sured using satellite-based microwave sensing; however, different measures of Arctic
sea ice extent have been made available based on differing algorithmic transformations
of raw satellite data. We propose and estimate a dynamic factor model that combines
four of these measures in an optimal way and accounts for their differing volatility and
cross-correlations. We then use the Kalman smoother to extract an optimal combined
measure of Arctic sea ice extent. It turns out that almost all weight is put on the NSIDC
Sea Ice Index, confirming and enhancing confidence in the Sea Ice Index and the NASA
Team algorithm on which it is based.
© 2020 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
1. Introduction

Climate change is one of the most pressing issues of
ur time, with many severe economic, environmental,
nd geopolitical consequences. Recently, the application
f time series analytical methods to this topic and, more
roadly, ‘‘climate econometrics’’ have emerged as a vi-
rant area of research in the literature, as highlighted, for
xample, in Hillebrand et al. (2020) and the references
herein. One important issue that these methods can ad-
ress is the loss of Arctic sea ice. The loss of Arctic sea
ce is a vital focus point in climate studies. It is both an
ngoing conspicuous effect of climate change and a cause
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of additional climate change via feedback loops. In partic-
ular, reduced Arctic sea ice boosts solar energy absorption
via decreased albedo due to its darkening color (see, for
example, Diebold and Rudebusch (2019), Pistone et al.
(2019) and Stroeve et al. (2012)) and increased methane
release due to melting permafrost (see, for example, Vaks
et al. (2020)).1

There are, however, several alternative measures of
Arctic sea ice extent that are based on different pro-
cessing methodologies of the underlying satellite-based
microwave measurement data, and the best choice among
these measures is not obvious (Bunzel et al., 2016). In this
paper, we study four such sea ice extent (SIE) measures,
which we denote as the Sea Ice Index (SIES), Goddard
Bootstrap (SIEG), JAXA (SIE J ), and Bremen (SIEB). The top
panel of Fig. 1 provides time series plots of these four
measures of Arctic SIE for the satellite measurement era,
which started in 1978. The four measures appear to be

1 For a broad and insightful overview of the evolution and causes
of reduced Arctic sea ice cover, see Shalina et al. (2020).
r B.V. All rights reserved.
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almost identical because their scale is dominated by large
seasonal swings. However, the effects of seasonality can
be removed by plotting each month separately for the
four series, as done in the lower twelve panels of Fig. 1.
Of course, the Arctic SIE measures all trend down in
very month, with steeper trends in the low-ice ‘‘sum-
er’’ months (e.g., August, September, October). (Note the
ifferent axis scales for different months.) There are also
ystematic differences across indicators. SIEG, for exam-
le, tends to be high, and SIE J tends to be low, while

SIES and SIEB are intermediate. However, the deviations
etween various pairs of measures are not rigid; that is,
hey are not simply parallel translations of each other.
nstead, there are sizable time-varying differences among
he various measures.

All of this suggests treating the various measures as
oisy indicators of latent true sea ice extent, which in
urn suggests the possibility of blending them into a
ingle combined indicator with less measurement error.
ndeed, some prominent studies have used simple equally
eighted averages of competing indicators, with precisely
hat goal. For example, a recent report on the state of the
ryosphere (IPCC, 2019) uses a simple average of three
ndicators.2 Simple averages, however, are often sub-
ptimal. Optimality generally requires the use of weighted
verages that give, for example, less weight to noisier
ndicators. Motivated by these considerations, in this pa-
er, we propose and explore a dynamic factor state-space
odel that combines the various published indicators into
n optimal measure of sea ice extent, which we extract
sing the Kalman smoother.
This paper proceeds as follows: in Section 2, we de-

cribe the four leading Arctic sea ice extent indicators
n this study and the satellites, sensors, and algorithms
sed to produce them; in Section 3, we propose a ba-
ic dynamic-factor state-space model for sea ice extent
nd use it to obtain optimal extractions of latent extent;
inally, Section 4 concludes the paper.

. Four Arctic sea ice extent indicators

Sea ice extent (SIE) indicators are constructed from
atellite measurements of the earth’s surface using pas-
ive microwave sensing, which is unaffected by cloud
over or a lack of sunlight. Several steps are necessary to
onvert raw reflectivity observations into final SIE mea-
urements. First, for a polar region divided into a grid
f individual cells, various sensors record a brightness
eading or ‘‘brightness temperature’’ for each cell. An al-
orithm then transforms these brightness readings into
ractional surface coverage estimates – sea ice concen-
ration (SIC) values – for each grid cell. Finally, SIE is
calculated by summing the area of all the cells with at
least 15 percent ice surface coverage.3 This rounding up
of SIE is effectively a bias correction since determining
the edge between ice and water can be especially difficult
in the summer, when, for example, melting pools on

2 See the notes for their Figure 3.3, page 3–13.
3 Parkinson and Cavalieri (2008) discuss reasons for using a 15

percent cutoff.
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summer ice surfaces can be mistaken for ice-free open
water (Meier & Stewart, 2019).

Different algorithms for processing the raw measure-
ments are important in shaping the final SIE estimates.
In addition, the SIE series are not based on identical raw
data because they use somewhat different satellites and
sensors Comiso (2007) and Comiso, Meier et al. (2017).
In this section, we review some aspects of the satellites,
sensors, and algorithms that underlie the SIE measures.

2.1. Satellites and sensors

Table 1 summarizes the operative dates of the var-
ious satellites and sensors that are relevant for Arctic
sea ice measurement. The first multi-frequency sensor
equipped on a satellite was the Scanning Multichannel
Microwave Radiometer (SMMR) launched in 1978 (Cav-
alieri et al., 1996). Starting in 1987, later sensors – the
Special Sensor Microwave Imager (SSM/I) and the Spe-
cial Sensor Microwave Imager/Sounder (SSMIS) – offered
higher-resolution images.4 In 2002 and 2012, respec-
ively, the Advanced Microwave Scanner Radiometer
or EOS (AMSR-E) and Advanced Microwave Scanner
adiometer 2 (AMSR2) sensors were launched, and pro-
ided further improvements in resolution (Comiso, Meier
t al., 2017).5 Given the inclinations of the satellite orbits

and the spherical shape of the earth, all of the satellites
share an inability to observe the Arctic ‘‘pole hole’’ – a
circular region at the very top of the world. The size of the
pole hole varies across sensors, but historically there has
been full confidence that the area covered by the pole hole
fulfills the 15 percent SIC requirement (Meier & Stewart,
2019).

Table 1 also describes the underlying source data for
our four SIE indicators. These measures use algorithms to
transform the raw satellite brightness data into SIC and
SIE values. We now turn to a more detailed discussion
of these algorithms to highlight the differences across SIE
indicators.

2.2. From raw measurement to SIE: Algorithmic transforma-
tions

Once brightness data have been recorded by satellite
sensors, an algorithm converts the measurements into
estimates of SIC . Here, we discuss the algorithms and
ther details of the various SIE indicators.

.2.1. Sea ice index
Updated on a daily basis and distributed by the Na-

ional Snow and Ice Data Center (NSIDC), the Sea Ice
ndex (SII or SIES) combines two separate Sea Ice in-
dicators: (1) the Sea Ice Concentrations from Nimbus-7
SMMR and DMSP SSM/I-SSMIS Passive Microwave Data

4 For a detailed discussion of sensor characteristics, see https://
nsidc.org/ancillary-pages/smmr-ssmi-ssmis-sensors.
5 Early in the sample, operational problems prevented data delivery

for several days throughout 1986 and between December 1987 and
January 1988 (Comiso, 2017). For more recent technical difficulties, see
https://www.nrl.navy.mil/WindSat/Description.php.

https://nsidc.org/ancillary-pages/smmr-ssmi-ssmis-sensors
https://nsidc.org/ancillary-pages/smmr-ssmi-ssmis-sensors
https://www.nrl.navy.mil/WindSat/Description.php
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Fig. 1. Four sea ice extent indicators.
Notes: We show the Sea Ice Index (SII), Japan Aerospace Exploration agency (JAXA), University of Bremen (Bremen), and Goddard Bootstrap (Goddard).
Units are millions of square kilometers.
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Table 1
Satellites, sensors, and algorithms.
Satellite/Sensor NASA Team Goddard Bootstrap JAXA Bootstrap ASI

Start End Start End Start End Start End

Nimbus-7 SMMR 10/26/1978 08/20/1987 11/01/1978 07/31/1987 11/1978 07/1987 1972 ...
DMSP-F8 SSM/I 08/21/1987 12/18/1991 08/01/1987 12/17/1991 07/1987 ... ... ...
DMSP-F11 SSM/I 12/19/1991 09/29/1995 12/18/1991 05/09/1995 ... ... ... ...
DMSP-F13 SSM/I 09/30/1995 12/31/2007 05/10/1995 12/31/2007 ... 06/2002 ... 12/2010
DMSP-F17 SSMIS 01/01/2008 12/31/2017 01/01/2008 present 10/2011 07/2012
DMSP-F18 SSMIS 01/01/2018 present
EOS/Aqua AMSR-E 06/2002 10/2011 2003 10/2011
Coriolis WindSat 10/2011 07/2012
GCOM-W1 AMSR2 07/2012 present 07/2012 present

Notes: NASA Team and Goddard Bootstrap dates from (Fetterer et al., 2017). JAXA Bootstrap dates from https://kuroshio.eorc.jaxa.jp/JASMES/climate/
index.html. ASI dates from https://seaice.uni-bremen.de/sea-ice-concentration/time-series/.
(NASA Team) (Cavalieri et al., 1996) – produced at the
Goddard Space Flight Center – and (2) the Near-Real-Time
DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations
(NRTSI) (Maslanik & Stroeve, 1999) – produced by the
NSIDC itself.6 A time lag of about one year between the
SIE estimates by the NASA Team and its publication in the
NSIDC database requires the NRTSI to complement the SII.

The NRTSI follows the NASA Team algorithm as closely
s possible, but inconsistencies between the two series
annot be ruled out entirely (Fetterer et al., 2017). In par-
icular, the two sub-indicators use brightness tempera-
ures from different providers.7 These raw readings can be
istorted by weather effects, making open water look like
ea ice cover. Therefore, post-calculation quality checks
pply land and ocean masks to remove erroneous and im-
lausible ice cover. However, the NASA Team and NRTSI
o not apply the exact same filters (Fetterer et al., 2017).
he former algorithm additionally screens the data man-
ally for falsely detected ice formation (Cavalieri et al.,
996), which can enhance accuracy but also reduce the
ransparency of the final measurements.

As Table 1 shows, the SII obtains the raw data from
ifferent generations of satellites and sensors. To make
he data comparable, a linear least-squares model of the
rightness temperatures, as reported by the two distinct
ensors for an overlapping period of operation, is intended
o adjust the reference points of 100 percent sea ice and
00 percent open water. These tie points then remain
ixed over the lifetime of the new system (Cavalieri et al.,
012).

.2.2. Goddard bootstrap
Another sea ice indicator, distributed by the NSIDC,

elies on SIC estimates from the Goddard Bootstrap algo-
ithm (SIEG).8 Despite the NASA Team and the Goddard
ootstrap algorithms having both been developed at the

6 See https://doi.org/10.7265/N5K072F8.
7 Maslanik and Stroeve (1999) takes data from the National

Oceanic and Atmospheric Administration Comprehensive Large Array-
data Stewardship System (NOAA CLASS); (Cavalieri et al., 1996) uses
data processed at the NASA Goddard Space Flight Center.
8 For a detailed description of the algorithm, see Comiso, Gersten

et al. (2017). For the data, see https://doi.org/10.5067/7Q8HCCWS4I0R.
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NASA Goddard Space Flight Center, there are some differ-
ences between the two approaches. These arise mostly
from the calibration of the tie points: while the NASA
Team adjusts these reference points for 100 percent open
water and 100 percent ice only when a new satellite
or sensor becomes operational, the Goddard Bootstrap
algorithm adjusts these reference points on a daily basis
to account for varying weather conditions (Comiso, Meier
et al., 2017). Differing weather filters and sensitivities to
varying physical temperatures also lead to differences in
the final measurements (Comiso et al., 1997). In contrast
to the NASA Team, the strength of the Goddard Bootstrap
algorithm is the identification of melting sea ice. There-
fore, the Goddard Bootstrap algorithm provides more ac-
curate estimates of the edge of the ice cover (Goldstein
et al., 2018).

Although differences between SIES and SIEG are gener-
ally assessed to be small, they cannot necessarily be ne-
glected (Goldstein et al., 2018).9 The differences between
the NASA Team and Goddard Bootstrap algorithms partic-
ularly occur during the melting season, when the former
generally reports larger deviations from ship or radar
observations. However, the relative accuracy of the two
algorithms is not clear cut since the Goddard Bootstrap
algorithm is highly sensitive to physical temperature and
underestimates SIC during winter periods in the higher
latitudes of the Arctic region.

2.2.3. Japan aerospace exploration agency
As listed in Table 1, both SIES and SIEG rely on the same

set of instruments, which have been criticized for their
low spatial resolution (Goldstein et al., 2018). The Japan
Aerospace Exploration Agency (JAXA) sea ice measure
(SIE J ) uses an adapted version of the Goddard Bootstrap
algorithm to derive SIC measures from satellite readings
with a higher spatial resolution (Comiso, Gersten et al.,
2017).10 However, readings from these high-resolution
satellites have only been available since 2000, so their

9 See also https://nsidc.org/support/faq/nasa-team-vs-bootstrap-
algorithm.
10 For a description and data, see https://kuroshio.eorc.jaxa.jp/
JASMES/climate/index.html.

https://kuroshio.eorc.jaxa.jp/JASMES/climate/index.html
https://kuroshio.eorc.jaxa.jp/JASMES/climate/index.html
https://seaice.uni-bremen.de/sea-ice-concentration/time-series/
https://doi.org/10.7265/N5K072F8
https://doi.org/10.5067/7Q8HCCWS4I0R
https://nsidc.org/support/faq/nasa-team-vs-bootstrap-algorithm
https://nsidc.org/support/faq/nasa-team-vs-bootstrap-algorithm
https://kuroshio.eorc.jaxa.jp/JASMES/climate/index.html
https://kuroshio.eorc.jaxa.jp/JASMES/climate/index.html
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data must be merged with observations from older sen-
sors to extend the data coverage to 1978 (Comiso, Meier
et al., 2017). SIE J also distinguishes itself from SIES and
SIEG by using a 5-day moving average of observations to
compensate for potentially missing data.

2.2.4. University of Bremen
Using observations delivered by the high-resolution

AMSR-E sensor, a group of researchers at the Univer-
sity of Bremen developed the ARTIST Sea Ice (ASI) algo-
rithm (Spreen et al., 2008) to estimate daily SIC .11 The
time-series (SIEB) uses different algorithms for different
sensors. Until the launch of the AMSR-E sensor in 2003,
SIEB used the NASA Team algorithm to transform bright-
ness readings into SIC values. From then on, the NASA
Team algorithm was replaced by the ASI.12

3. Optimal extraction of latent extent

The four sea ice indicators discussed above differ in
terms of the raw data sources and the algorithms used
to process the raw data. They can be viewed as distinct
indicators of an unobserved or latent ‘‘true’’ sea ice extent,
SIE∗. Blending such a set of noisy indicators can produce
a single series with less measurement error. Here, we
formalize this intuition in a state-space dynamic-factor
model, from which we can extract an optimal composite
estimate of SIE∗ from the four component indicators.13

3.1. A dynamic factor model

We work in a state-space environment, modeling each
of the four indicators (SIES , SIE J , SIEB, and SIEG) as driven
y latent true sea ice extent, SIE∗, with an additive mea-
urement error.14 As discussed previously, some indica-
ors present level shifts with respect to one another, most
ften resulting from how they respectively deal with tie
oints. It is thus preferable to constrain both the trend
nd dynamics to follow a common factor, while leaving
evel offsets unconstrained. The measurement equation
s:⎛⎜⎜⎜⎝
SIES

t

SIE J
t

SIEB
t

SIEG
t

⎞⎟⎟⎟⎠ =

⎛⎜⎝cS
cJ
cB
cG

⎞⎟⎠ +

⎛⎜⎝λS
λJ
λB
λG

⎞⎟⎠ SIE∗

t +

⎛⎜⎜⎜⎝
εS
t

ε
J
t

εB
t

εG
t

⎞⎟⎟⎟⎠ , (1)

11 Monthly data from https://seaice.uni-bremen.de/data/amsr2/
today/extent_n_19720101-20181231_amsr2.txt.
12 See https://seaice.uni-bremen.de/sea-ice-concentration-amsr-eams
r2/time-series/.
13 Dynamic factor analysis is closely related to principal component
analysis, but the dynamic factor model provides a fully specified
probabilistic modeling framework in which estimation and factor
extraction via the Kalman filter are statistically efficient. Under certain
conditions, the two approaches coincide in large samples, but those
conditions include a very large number of indicators. Those conditions
are violated in our case since we have only four indicators; therefore,
the dynamic factor analysis is preferred. For a much more complete
account, see Stock and Watson (2011).
14 The approach parallels (Aruoba et al., 2016), who extract la-
tent ‘‘true’’ U.S. GDP from noisy expenditure-side and income-side
estimates.
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where

εt = (εS
t , ε

J
t , ε

B
t , ε

G
t )

′
∼ iid (0, Σ) , (2)

with

Σ =

⎛⎜⎜⎜⎝
σ 2
SS · · ·

σ 2
JS σ 2

JJ · ·

σ 2
BS σ 2

BJ σ 2
BB ·

σ 2
GS σ 2

GJ σ 2
GB σ 2

GG

⎞⎟⎟⎟⎠ . (3)

Moreover, ci = 0 when we normalize λi = 1 for i ∈

{S, J, B,G}.
The transition equation is:

SIE∗

t = ρ SIE∗

t−1 + TRENDt + SEASONALt + ηt , (4)

where ηt ∼ iid(0, σ 2
ηη) is orthogonal to εt at all leads

and lags. Various modeling approaches are distinguished
by their treatment of TRENDt and SEASONALt . We fol-
low (Diebold & Rudebusch, 2019) and allow for 12
monthly deterministic seasonal effects, each of which is
endowed with a (possible) deterministic quadratic trend.15
This results in a blended deterministic ‘‘trend/seasonal’’,
given by:

TRENDt + SEASONALt =

12∑
i=1

ai Dit +

12∑
j=1

bj Djt ·TIMEt

+

12∑
k=1

ck Dkt ·TIME2
t , (5)

where Di indicates month i and TIME indicates time.
Hence, the full transition equation is:

SIE∗

t = ρSIE∗

t−1 +

12∑
i=1

ai Dit +

12∑
j=1

bj Djt ·TIMEt

+

12∑
k=1

ck Dkt ·TIME2
t + ηt . (6)

The model is already in a state-space form, and one
pass of the Kalman filter, initialized with the uncondi-
tional state mean and covariance matrix, provides the
1-step prediction errors necessary to construct the Gaus-
sian pseudo-likelihood, which we maximize using the EM
algorithm, and standard errors are calculated from the an-
alytic Hessian matrix.16 Following estimation, we use the
Kalman smoother to obtain the best linear unbiased ex-
traction of SIE∗ from the estimated model. The smoother

15 We emphasize that our model is meant to be a simple benchmark,
and that many potentially important variations and extensions are
possible. For example, one could alternatively entertain stochastic (as
opposed to deterministic) trend and seasonality. A simple approach
would be separate month-by month modeling so that there is no sea-
sonality, whether with one unit root, as in (for month m) TRENDm,t =

dm + TRENDm,t−1 + um,t , or two unit roots, as in TRENDm,t = dmt +

TRENDm,t−1 + um,t , where dm,t = dm,t−1 + vm,t .
16 Note that we do not assume Gaussian shocks, and that it is
not necessary to assume Gaussian shocks as we can still maximize
the Gaussian likelihood even if the shocks are not truly Gaussian.
The resulting (pseudo-)MLE still has good properties of consistency,
asymptotic normality, and so forth.

https://seaice.uni-bremen.de/data/amsr2/today/extent_n_19720101-20181231_amsr2.txt
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averages across indicators, but it desirably produces opti-
mally weighted averages rather than simple averages. The
smoother also averages over time, using data both before
and after time t to estimate SIE∗

t , which is also necessary
for optimal extraction due to the serial correlation in SIE∗.
or details, see Harvey (1989).
One or more restrictions are necessary for identifi-

ation. The standard approach is to normalize a factor
oading, which amounts to an unbiasedness assumption.
ormalizing λS=1, for example, amounts to an assump-
ion that SIES is unbiased for SIE∗. Whether such an unbi-
ased indicator truly exists (and, if so, which) is of course
an open question – one can never know for sure. SIES and
SIEG are the most widely used indicators (Meier et al.,
2014), Peng et al. (2013), so it is natural to consider
normalizing on λS or λG. We explore both.

3.2. Estimated measurement equation

The estimated measurement equation (1), normalized
with λS=1, is:⎛⎜⎜⎜⎝

SIES
t

SIE J
t

SIEB
t

SIEG
t

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0

0.225
[0.025]
0.043
[0.020]
1.040
[0.034]

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
1

0.950
[0.002]
0.995
[0.002]
0.961
[0.003]

⎞⎟⎟⎟⎟⎠ SIE∗

t +

⎛⎜⎜⎜⎝
εS
t

ε
J
t

εB
t

εG
t

⎞⎟⎟⎟⎠ , (7)

here standard errors appear beneath each estimated
oading. All indicators are estimated to load heavily on
IE∗, with all λ̂′s very close to 1. SIE J and SIEG load least
heavily (λ̂J=0.950, λ̂G=0.961), in accordance with their
generally less abrupt trend in Fig. 1. SIEB loads with an es-
timated coefficient that is marginally different from 1 but
significant at the 5% level. Of course, the SIES loading is 1
by construction. While Bremen’s level offset (with respect
to SII) is arguably negligible, those of Jaxa and especially
Goddard are sizable. Hence, the estimation results agree
with Fig. 1, with SIES and SIEB more in the center of the
range, and SIE J and SIEG being more extreme.

Alternatively, the estimated measurement equation
normalized with λG=1 is:⎛⎜⎜⎜⎝

SIES
t

SIE J
t

SIEB
t

SIEG
t

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−1.081

[0.039]
−0.803

[0.038]
−1.033

[0.042]
0

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
1.040
[0.003]
0.988
[0.003]
1.034
[0.003]
1

⎞⎟⎟⎟⎟⎠ SIE∗

t +

⎛⎜⎜⎜⎝
εS
t

ε
J
t

εB
t

εG
t

⎞⎟⎟⎟⎠ . (8)

The estimated loadings in Eqs. (7) and (8), corresponding
to λS=1 and λG=1, respectively, are effectively identical
up to the normalization.

Now consider the associated measurement error co-
variance matrix (3). The estimate for the λS=1 normal-
ization is:

Σ̂ =

⎛⎜⎜⎜⎜⎜⎝
0.0003
[0.0042]

· · ·

0.0010
[0.0043]

0.0236
[0.0049]

· ·

0.0004
[0.0044]

0.0025
[0.0045]

0.0146
[0.0048]

·

−0.0025 0.0081 0.0002 0.0361

⎞⎟⎟⎟⎟⎟⎠ , (9)
[0.0044] [0.0048] [0.0046] [0.0056]
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with the implied estimated correlation matrix:

R̂ =

⎛⎜⎝ 1 · · ·

0.366 1 · ·

0.206 0.134 1 ·

−0.747 0.276 0.008 1

⎞⎟⎠ . (10)

Note that σ̂ 2
GG is much higher than any of σ̂ 2

SS , σ̂ 2
JJ , and

σ̂ 2
BB, potentially due to different indicators using different

methods to determine tie points; i.e., reference points of
brightness for 100% sea ice and 100% open water. The
choice is crucial for the accurate measurement of SIC
within grid cells. Tie points, moreover, need not be con-
stant because brightness readings are sensitive to weather
effects and atmospheric forcings (Ivanova et al., 2015).
Dynamic tie-point calibration is potentially desirable be-
cause it can decrease the bias of SIC measurements
(Comiso, Meier et al., 2017). The latest version of the
Goddard Bootstrap algorithm, in particular, calibrates tie
points daily. One would expect, however, that the bias
reduction from dynamic tie-point calibration may come
at the cost of potential discontinuities that increase mea-
surement error variance. Our results confirm this conjec-
ture. Our estimate of σ̂ 2

GG is about 13 times that of σ̂ 2
BB

(which uses constant tie points).
Alternatively, the estimated measurement error co-

variance matrix for the λG=1 normalization is:

Σ̂ =

⎛⎜⎜⎜⎜⎜⎝
0.0003
[0.0041]

· · ·

0.0008
[0.0041]

0.0233
[0.0048]

· ·

0.0003
[0.0042]

0.0022
[0.0044]

0.0144
[0.0047]

·

−0.0025
[0.0042]

0.0079
[0.0046]

0.0001
[0.0045]

0.0361
[0.0055]

⎞⎟⎟⎟⎟⎟⎠ , (11)

with the implied estimated correlation matrix:

R̂ =

⎛⎜⎝ 1 · · ·

0.311 1 · ·

0.161 0.121 1 ·

−0.782 0.272 0.002 1

⎞⎟⎠ . (12)

3.3. Estimated transition equation

Now let us move to the transition equation (6). Using
the λS=1 normalization, we obtain ρ̂=0.704 [0.041] and
the trend/seasonal parameter estimates (âi, b̂j, and ĉk), as
reported in the λS=1 columns of Table 2. The trends for all
the months are highly significant and slope downwards.
The trends for the summer months (August-November)
display a notable negative, and are generally statisti-
cally significant, curvature, whereas in the non-summer
months the quadratic trend terms are generally small and
statistically insignificant. For the λG=1 normalization, we
obtain ρ̂=0.719 [0.042] and the trend/seasonal parameter
estimates (âi, b̂j, and ĉk), as reported in the λG=1 columns
of Table 2. The λS=1 and λG=1 results are very similar.

3.4. Extracted latent sea ice extent

In Figs. 2 (λS=1) and 3 (λG=1), we show the optimal
latent sea ice extent extractions (ŜIE∗) in black, together

with the four raw indicators in color, by month. First,
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Fig. 2. Extracted sea ice extent and four raw indicators, by month, λS=1.
Notes: We show sea ice extent extracted assuming λS=1, together with four raw indicators: Sea Ice Index (SII), Japan Aerospace Exploration agency
(JAXA), University of Bremen (Bremen), and Goddard Bootstrap (Goddard). Units are millions of square kilometers.
t
t
t

consider Fig. 2. Of course ŜIE∗(λS=1) is centered on SIES

due to the λS=1 normalization. Moreover, ŜIE∗(λS=1) is
lways very close – almost identical – to SIES (and close
o SIEB because SIEB tends to be very close to SIES).17

17 Indeed, when making Fig. 2, we added a tiny constant (0.1) to
SIES to make it easier to distinguish SIES from ŜIE∗(λ =1).
S v
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Now consider Fig. 3 (λG=1). Due to the different nor-
malization, ŜIE∗(λG=1) is centered not on SIES but rather
on SIEG, so ŜIE∗(λG=1) is shifted upward relative to
ŜIE∗(λS=1). Moreover, the location of ŜIE∗(λG=1) relative
o SIEG clearly varies by month. In winter months, it tends
o be greater than SIEG, whereas in summer months it
ends to be less than SIEG. Note in particular that the
ariation of ŜIE∗(λ =1) around SIEG is noticeably greater
G
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Fig. 3. Extracted latent sea ice extents and four raw indicators, by month, λG=1.
otes: We show sea ice extent extracted assuming λG=1, together with four raw indicators: Sea Ice Index (SII), Japan Aerospace Exploration agency
JAXA), University of Bremen (Bremen), and Goddard Bootstrap (Goddard). Units are millions of square kilometers.
t
p
b
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han the variation of ŜIE∗(λS=1) around SIES . Clearly,
ÎE∗(λG=1) is influenced more by movements in other
indicators (SIES , SIE J , and SIEB) than ŜIE∗(λS=1) is.

The fact that ŜIE∗(λS=1) and ŜIE∗(λG=1) are different,
oth in terms of level and variation around the level, lim-
ts their usefulness for research focusing on level since the
evel depends entirely on identifying assumptions. How-
ver (and crucially), in an important sense ŜIE∗(λ =1) and
S

1516
ŜIE∗(λG=1) are highly similar: The model and identifica-
tion scheme makes ŜIE∗(λS=1) and ŜIE∗(λG=1) identical up
o a linear transformation. This is clear in Fig. 4, which
lots the two competing extracted factors on a month-
y-month basis. Regressions of ŜIE∗(λG=1) on ŜIE∗(λS=1)
ield highly significant intercepts not far from zero, highly
ignificant slopes near 1.0, and R2 values above 0.999 for
ach month.
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Fig. 4. Extracted sea ice extent, by month. Notes: Units are millions of square kilometers.
Because ŜIE∗(λS=1) and ŜIE∗(λG=1) are identical up
o a linear transformation, it makes no difference which
ÎE∗ we use for research focusing on linear relationships
etween SIE∗ and other aspects of climate (for instance,
arious radiative forcings). The obvious choice, therefore,
s ŜIE∗(λS=1), which is just SIES itself, dispensing with the
eed to estimate the factor model.
1517
4. Summary and conclusion

We propose a dynamic factor model for four leading
Arctic sea ice extent indicators. We estimate the model
and use it in conjunction with the Kalman smoother to
produce a statistically optimal combination of the indi-
vidual indicators, effectively ‘‘averaging out’’ the individ-
ual measurement errors. We explore two identification
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Table 2
Trend/seasonal parameter estimates.

λS=1 λG=1

ai bj ck ai bj ck

Jan 5.287
[0.583]

1.412
[1.005]

−4.736
[2.025]

5.245
[0.602]

0.876
[0.953]

−3.608
[1.930]

Feb 5.296
[0.632]

−0.31
[0.995]

−1.735
[2.031]

5.171
[0.653]

−0.267
[0.948]

−1.616
[1.936]

Mar 4.858
[0.666]

−1.227
[0.997]

0.99
[2.033]

4.738
[0.686]

−1.153
[0.950]

1.011
[1.938]

Apr 4.066
[0.672]

−1.719
[1.003]

2.187
[2.027]

3.975
[0.692]

−1.62
[0.956]

2.133
[1.932]

May 2.977
[0.644]

0.367
[1.012]

−2.25
[2.026]

2.939
[0.665]

0.398
[0.965]

−2.176
[1.931]

Jun 2.732
[0.580]

−1.307
[1.011]

−1.072
[2.029]

2.725
[0.603]

−1.225
[0.963]

−1.021
[1.934]

Jul 1.657
[0.525]

−1.497
[1.015]

−3.053
[2.031]

1.711
[0.550]

−1.411
[0.967]

−2.884
[1.935]

Aug 0.719
[0.444]

0.511
[1.029]

−5.634
[2.041]

0.837
[0.472]

0.532
[0.981]

−5.338
[1.945]

Sep 1.715
[0.350]

−1.066
[1.026]

−2.894
[2.064]

1.829
[0.380]

−0.993
[0.978]

−2.667
[1.968]

Oct 3.923
[0.324]

1.274
[1.026]

−5.929
[2.061]

3.958
[0.354]

1.264
[0.978]

−5.583
[1.965]

Nov 4.976
[0.393]

−1.711
[1.025]

3.678
[2.089]

4.947
[0.421]

−1.639
[0.976]

3.715
[1.992]

Dec 5.504
[0.484]

−0.791
[1.032]

0.056
[2.036]

5.423
[0.510]

−0.738
[0.984]

0.133
[1.941]

Notes: The bj are ×103 and the ck are ×106 .
strategies that correspond to two different factor loading
normalizations. The corresponding two extracted com-
bined measures (latent factors) are identical up to a linear
transformation, so either one can be used to explore
relationships between sea ice extent and other variables.
Interestingly, however, the extracted factor for one of
the normalizations puts all the weight on the Sea Ice
Index. Therefore, the Sea Ice Index alone is a statistically
optimal ‘‘combination’’, and one can simply use it alone
with no loss, dispensing with the need to estimate the
factor model. There is no gain from combining the Sea
Ice Index with other indicators, confirming and enhancing
confidence in the Sea Ice Index and the NASA Team
algorithm on which it is based, and similarly lending
credibility – in a competition against very sophisticated
opponents – to the NSIDC’s claim that the Sea Ice Index is
the ‘‘final authoritative SMMR, SSM/I, and SSMIS passive
microwave sea ice concentration record’’ (Fetterer et al.,
2017).
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